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PREFACE

In the early seventies, Professor Julian Szekely of M.IT. and I published a pioneer textbook
on the application of transport phenomena in the processing of minerals and metals. The tide
of that book was Rate Phenomena in Process Metallurgy (Wiley, 1971), and the first edition
went out of print by 1980. Meanwhile, I spent another ten years in industrial research at
Noranda Inc. and later as vice president of technology at Kennecott Corporation before joining
the Henry Krumb School of Mines of Columbia University in 1980. At Columbia, I teach rate
phenomena and process design to students in chemical engineering, materials science, and
mining engineering. Also, during the last decade, I have presented short, intensive courses on
the same subjects to graduate students and practicing engineers at several universities.

On the basis of this combination of industrial research and teaching experience, I concluded
that there is a need for a textbook that integrates the elements of transport phenomena and
chemical rate theory with numerical examples of their application in the chemical processing
of minerals and other primary materials. The word “minerals” is used because most of the
materials we use originate in the mineral wealth of our planet. The oldest materials used by
mankind were stones and metals, and the same materials in improved forms are the bones,
muscles, and skin of our present-day civilization.

Each of the transport phenomena, for example fluid flow or heat conduction, is complex
enough to warrant one or more textbooks of its own; however, there is a common thread that
runs through transport phenomena and heterogeneous reactions and deserves to be followed
up in a single course. Differential and overall material and energy balances, dimensions, units,
physical properties, engineering concepts, and cormrelations can be one thousand pieces of a
puzzle or an admirable picture of the simplicity of the laws of nature. I have tried to follow that
common thread and to write a book that is, to borrow a term of the computer age, “user-friend-
ly” to teachers and students alike.

This book is designed as a basic course in rate phenomena for all engineering or applied
science students interested in the chemical processing of materials. Additional courses in
transport theory or in chemical kinetics may then be taken in specialized fields, such as
advanced transport theory for chemical engineers and solid-state diffusion for materials
scientists.

In my travels and lectures outside the U.S., it has become obvious that professors and
students of engineering around the world refer frequently to English-language textbooks.
Indeed, the earlier book on rate phenomena with Professor Szekely has made friends and
opened doors for us throughout the world. In recognition of this special role, I have tried to
simplify the language and standardize the nomenclature and units used in this textbook.

In the eighties, the exorbitant claim was made in the press that “mining is dead” and other
heavy industries, such as steelmaking, were practically written off. Subsequent events have
shown that such notices were premature. Humanity cannot progress or even maintain present
standards without the intelligent utilization of mineral resources and recycled materials. In
recent years, “advanced materials” have become the focus of government research funding;
yet, if one looks at the “bottom line” of materials-producing companies around the globe, it is
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clear that the bulk of the revenues and profits are still derived from primary materials. In the
foreseeable future, chemical, metallurgical, mineral, and mining engineers, as well as materials
scientists, will be needed in order to cope with dwindling natural resources, environmental
concerns, and the aspirations of underdeveloped nations for a better standard of living.

It is said that imitation is the sincerest form of flattery. In our 1971 textbook we adapted
much from chemical engineering literature and from technical papers of numerous authors.
Later on, we were flattered to see parts of our book in other textbooks on process metallurgy.
In this book, I have also adapted suitable material from books by Geiger and Poirier (Transport
Phenomena in Metallurgy, 1973); Szekely (Fluid Flow in Metals Processing, 1979);
Cheremisinoff and Gupta (Handbook of Fluids in Motion, 1983); Rohsenow et al. (Handbook
of Heat Transfer, 1985); Rosner (Transport Processes in Chemically Reacting Flow Systems,
1986); Guthrie (Engineering in Process Metallurgy, 1987); Evans and De Jonghe (Production
of Inorganic Materials, 1991); and others mentioned in the references.

I am greatly indebted to Professor Szekely for the parts of Rate Phenomena in Process
Metallurgy that have been adapted in this book and regret that circumstances did not allow us
to collaborate again. The contributions of Professor Szekely and his former students to the
understanding of transport phenomena in materials processing are towering.

I thank Professor James W. Evans of the University of Califomnia (Berkeley) for critically
reviewing an early draft of this book and making many invaluable suggestions for improving
the material. Professor Paul Duby of Columbia University kindly reviewed the electrochemical
examples. My doctoral students at Columbia have assisted along the way; in particular, the
outstanding work of Baozhong Zhao on the illustrations and the review of numbers in the final
manuscript by Roger Westcott are most gratefully acknowledged.

Financial support over the years of my research at Columbia by the Mining and Mineral
Resources Research Institutes program of the U.S. Bureau of Mines, National Science Foun-
dation, Environmental Protection Agency, Noranda Technology, Outokumpu Research,
Boliden Metall, and others was essential. In particular, I would like to express my gratitude to
Peter Tarassoff, Phillip Mackey, John Peacey, Dan Poggi, Keith Brimacomb, Jyrki Juusela,
Juho Makinen, Jussi Asteljoki, Theo Lehner, Ivan Gorup, and Milton Ward for their support of
my academic endeavors over the years.

Two professors who shaped my academic career are Bill Gauvin, the unforgettable chemical
engineering teacher at McGill University, and Herbert Kellogg, who opened the way to
Columbia University.

This book was completed in large part while I was visiting professor at the Institute for
Advanced Materials Processing (Sozaiken) of Tohoku University in Sendai, Japan. Thanks are
due to my hosts, Professors Tokuda and Waseda, for their wonderful hospitality, and to
Professors Itagaki, Omori, and Yazawa for introducing me to Japanese culture.

Lastly, I want to thank Liliana Nikolich Themelis for her contribution in the word processing
of this book and my entire family for their moral support and encouragement over the years.



ONE

Introduction

Chemicals, metals and other materials are produced by means of a series of unit operations
each of which involves a number of simultaneous, or sequential, phenomena: the transfer of
momentum or kinetic energy, the transfer of heat and mass, and chemical reactions between
different phases. In general, such processes involve a number of physical and chemical
transformations. The rate of these transformations determines, by and large, the cost of
production of such materials.

For example, in the production of chemicals and metals by the leaching of mineral
particles, a solution is pumped to a reactor where a slurry of the particles is maintained in
a state of agitation by air injection or other means. Fluid flow phenomena determine the
energy required to pump the solution in and out of the tank and to maintain the particles
in suspension. The tank is controlled at the proper operating temperature by means of heat
transfer. The rate of leaching depends on the rates of mass transfer between the solution
and the particles, diffusion through each particle and chemical reaction at the interface of
the unreacted core. After the leaching solution leaves the tank, various other unit opera-
tions, such as solvent extraction, precipitation, settling, filtration, and electrowinning may
be required to produce a final marketable material.

As another example, in the production of steel by injecting an oxygen jet through a
bath of high-carbon iron, the momentum of the rising gas bubbles is transferred to the liquid
and mixes the bath; the gas bubbles are heated by heat transfer from the metal; there is
mass transfer of carbon from the melt to the gas bubbles, through the gas/liquid interface,
and chemical reaction between carbon atoms and oxygen molecules.

The effectiveness and cost of an industrial unit operation are very much related to the
rate at which such phenomena take place within it. Phenomena which are beneficial to the
process should be speeded up as much as possible while others, of an adverse effect, need to
be slowed down. For instance, in the production of cement, an increase in the heat transfer
rate between the rolling bed of limestone and the combustion gases above it will increase the
productivity of a rotary kiln. On the other hand, a decrease in heat transfer by conduction
through the kiln wall, by means of improved insulation, will reduce heat loss and also be
beneficial.

1.1. CLASSES OF RATE PHENOMENA

The rate phenomena involved in materials processing can be divided into two broad classes:
e Transport phenomena involve the transfer of momentum (kinetic energy)
heat (thermal energy), and mass;
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¢ Chemical or physicochemical phenomena (e.g., combustion, abéorption, des-
orption, electrodeposition) involve transformation of a species and interaction
between various chemical species and phases.

1.2. “MICRO-SCALE” AND “MACRO-SCALE” STUDY OF RATE PHENOMENA

Momentum transport theory allows us to define the “fine structure of flow,” that is to
determine the velocity distribution in a fluid, especially in the vicinity of a solid surface.
For instance, if we want to understand the rate of heat or mass transfer between a reacting
iron oxide particle and the hydrogen gas around it, we must attempt to quantify the effect
of flow conditions on the thickness of the gaseous “boundary layer” arcund the particle and
the rate of diffusion of hydrogen through this gas film. One of the strong motivating forces
behind the study of transport phenomena is the need to understand better the nature of these
boundary layers and vse this knowledge to control the processing conditions for a particular
product.

An understanding of fluid flow phenomena (i.e., the transport of momenturn) is also
needed to establish the energy, or power, requirements to move a fluid at a specified flow
rate. For example, one may have to calculate the size of the pump and of the pipe diameter
required to move a given flow rate of a liquid from one point to another; or it may be
necessary to calculate the mixing energy to be provided in a leaching tank in order to keep
the particles in suspension and provide a certain rate of interaction between them and the
enveloping liquid.

Therefore, we need to study the momentum transport phenomena both in “micro-scale,”
where we focus on what is happening to an infinitely small fluid element; and in “macro-
scale,” where we treat a large section of the vessel under investigation, or even the entire
vessel, as a “black box” and we examine the inputs and outputs from the box, by means of
overall energy and material balances.

1.3. COUPLING OF RATE PHENOMENA

The flow of a fluid through a heat exchanger can be controlled by the size of the pump
used to move the fluid and is independent of the rate of heat transfer through the pipe wall.
However, the flow of air rising from a room heater is very much dependent on the rate of
heat transfer from the heater to the surrounding air. In the latter case, momentum and heat
transfer are said to be coupled.

Also, the surface area of a solid particle does not depend on the forces acting on it;
while the size and shape of gas bubbles injected in a liquid will depend on pressure and
temperature and other factors. Therefore, in order to determine the heat or mass transfer
between a gas and a liquid, it is necessary to first estimate the interface area by considering
the forces acting on the system. The coupling of transport phenomena in such a case is
evident.

1.4. TOOLS USED IN STUDY OF TRANSPORT PHENOMENA

The main tools used in the study of transport phenomena are:
a. The phenomenological (i.e., experimentally derived) relationships expressing the
proportionality between:
o momentum flux and velocity gradient (Newton’s law of viscosity),

——— e
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Table 1.1. Analogies in Transport Phenomena

Transport of
Momentum Heat Mass

Flux Tyx Gy Nay
Driving force du, /ay aT/ay dcp /oy

Velocity Temperature Concentration

gradient gradient gradient
Transport property i} k Dan
Analogous transport v=pwp a=k/pCp Dap

properties
Analogous laws Tyx = —v[3(puy)/y] gy = -a[a(pCPT)/ dy] N Ay =—Dagloca/ ayl
Newton's law . Fourier’s law Fick’s law
of viscosity* of conduction* of diffusion”

*For constant values of material properties.

o heat flux and temperature gradient (Fourier's law of conduction),
» mass flux and concentration gradient (Fick's first law of diffusion).
b. The basic mass and energy conservation equations:
o the differential mass balance (conservation of mass),
e the differential momentum balance (Newton’s law of conservation of energy),
o the differential heat balance (conservation of thermal energy).
c. Semi-empirical correlations derived by experimentation on the actual system or from
appropriate physical or mathematical model.
d. Chemical rate theory and thermodynamics.

1.5, ANALOGIES BETWEEN TRANSPORT PHENOMENA

Although there are differences between momentum, which is a vectorial quantity (magni-
tude and direction), and heat and mass, which are scalar (magnitude only), there are also
important similarities. These similarities, or analogies, help us to understand the various
transport phenomena and allow us to use analytical solutions, correlations, and computer
programs developed for one type of transport in problems related to the other two. For ex-
ample, the transport of momentum within a Auid depends on the fluid viscosity -and velocity
gradients; similarly, the transfer of heat by conduction within a material depends on its ther-
mal conductivity and the existing temperature gradients. Table 1.1 illustrates the principal
analogies between momentum, heat and mass transfer; these and other useful analogies will
be discussed in detail throughout this book.

1.6. DIFFUSIVE AND CONVECTIVE COMPONENTS OF TRANSPORT

Mass and heat can be transported through fluids in two ways:
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. a. By diffusion/conduction through a stagnant layer of fluid; for example, hot molecules
in a liquid film will transfer heat by conduction to adjacent cooler molecules. This type of
mass/heat transfer is called diffusive transport.

b. By movement of fluid elements from one location to another; for example, air
heated by contact with a room heater will rise and heat other parts of the room. This type
of heat/mass transfer is calied convective transport.

1.7. SEMI-EMPIRICAL CORRELATIONS

The theory of transport phenomena is essential in trying to understand and control the reac-
tions involved in the processing of materials. However, the complexity of many processing
systems does not allow for a purely theoretical description of the occurring phenomena.

This has necessitated the development of derivative semi-empirical concepts (i.e., based
partly on experimentation) which are also described in this book. Examples of such engi-
neering correlations are the concepts of the friction factor, which is used extensively in fluid
flow calculations, and of the heat and mass transfer coefficients.

Of course, there can also be totally empirical correlations, such as are developed by
so-called factorial experiments at the end of which variable Y is related to variables X,
W, and Z solely on the basis of the experiments. However, the semi-empirical approach
is preferable because it requires a basic understanding of the fundamentals of the system.

As will be seen throughout this text, many of the problems facing process engineers in -

fluid flow, heat transfer, mass transfer and chemical reaction can be solved by means of
semi-empirical correlations.

Some engineering problems are relatively old, such as the flow of fluids through con-
duits; therefore, the corresponding correlations have been honed to perfection and are avail-
able in the form of equations, plots or tables where one has only to look to find the answer
to a specific question. There are other systems, for instance the flow of a gas jet injected
into a liquid, where correlations are still being tested; and there are many other systems
where, as of yet, there are no available correlations. It is hoped that readers of this text, by
combining their knowledge of theory with experimentation and analysis, will find oppor-
tunities to develop such correlations and thus advance further the technology of materials
processing.

1.8. PROCESSING OF ADVANCED MATERIALS

In recent years, metallurgical engineering departments, and many mineral resource compa-
nies, have broadened their base of operations to encompass inorganic materials in general.
An example of this trend is the renaming of the Metallurgical Society in the U.S. to the
Minerals, Metals and Materials Society. Also, there has been much development of novel
advanced materials which may consist of metals, ceramics, plastics or composites. At some
stage of the production of such materials, the primary materials or the reagents are in a fluid
state; understanding and controlling the rate phenomena in the liquid or gaseous state may
have a profound effect on the properties and quality of the final product.

Examples of such processes are the rapid solidification of molten droplets and films,
crystal growing from a melt, chemical vapor deposition, plasma spraying and similar pro-
cesses. In such cases, the structure of a solid product depends on the processing operations
which involve fluid flow, heat and mass transfer. In general, the efficient production of

zi
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advanced materials, such as semiconductors and superconductors, rapidly solidified ribbons
for magnetic applications, and high-strength alloys, depends on the intelligent application
of transport phenomena in the design and control of processes.

1.9. SCOPE OF THIS BOOK

This book is an introduction to the application of transport and chemical rate theory for
solving problems encountered in the chemical processing of materials. On the basis of the
teaching experience of the author, the material has been designed for presentation in about
sixty hours of lectures to engineering students and also to graduate students who have moved
to chemical processing from other disciplines. The text has also been written with the idea
of serving practicing engineers as a quick reference to the theory and application of rate
phenomena.

The advanced mathematical aspects of transport theory, such as three-dimensional en-
ergy and mass transfer and the modeling of turbulent flow are introduced. However, for a
more advanced treatise of a particular transport phenomenon, the reader is referred through-
out the text to more specialized textbooks.The emphasis of this text is on how easily one
can use transport and chemical rate theory and the relevant properties of materials to solve
the kind of problems that are most frequently encountered in the chemical processing of
minerals and materials.

Following this introduction, the text continues with a description of fluid flow and mo-
mentum transfer, heat transfer by conduction, convection and radiation, and mass transfer by
diffusion and convection. The final chapters discuss the basic aspects of chemical thermo-
dynamics and kinetics and some applications of rate theory in the analysis of heterogeneous
reaction systems which involve a combination of transport and chemical rate phenomena.

It is evident that the application of transport theory is not limited to a particular class
of materials. Thus, this book is designed for chemical and metallurgical engineers who are
interested in the efficient processing of materials; and for mineral and mining engineers who
are concerned principally with the processing of mineral resources. The common thread
is that most systems of concern in the chemical processing of minerals, metals and other
materials are of a heterogeneous nature, that is they involve interphase reactions.
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Dimensions and Units of Measurement

In applying transport theory to the solution of engineering problems, we have to use a mul-
tiplicity of principles, laws and relationships; these are derived from mathematics, physics
and chemistry as well as from experimentation. It is not enough to know the particular
laws and equations that apply to a particular case. In order to obtain a specific solution to
a particular problem, we must be able to deal effectively with the numbers underlying the
various equations. The solution of a problem involves four steps: a) identifying the appro-
priate controlling equations; b) ensuring that these equations are dimensionally consistent;
¢) ensuring that the units used in the equations are homogeneous; d) performing the required
numerical calculations.

~ In this chapter, we will discuss steps b) and ¢) which are common to all rate phenomena.

2.1. THE DIMENSIONS OF PHYSICAL SYSTEMS

We know from elementary geometry that the volume of a rectangular box is expressed in
terms of three linear measurements: length, width and height. Therefore, if the dimension
of distance is denoted by L, the dimensions of surface area are L2 and of volume L3. Let
us now define the dimension of time by t and the dimension of mass by M. Then, from
elementary physics, the dimensions of velocity must be Lt™' and of acceleration Lt~2.
Also, since force is equal to mass times acceleration, the dimensions of force are MLt 2.

In physics, work is defined as the product of force times the distance over which
the force is applied. Therefore, the dimensions of work are ML?*t~2. Kinetic, potential,
and other forms of energy have the same dimensions as work. Finally, the power used in
doing work, that is the rate of expending energy, is the ratio of work done per unit time.
Accordingly, the dimensions of power are ML%t 3.

In problems involving the generation or transfer of heat, we must introduce the dimen-
sion of temperature, T. The dimensions of thermal energy are the same as for all other kinds
of energy we discussed above, i.e., MUL2t~2. However, since heat is usnally expressed in
heat units (e.g., Joules or calories) and usually appears in all terms of a thermal energy
balance, it is convenient to represent it by the composite dimension of heat, Q. Accordingly,
the dimensions of heat transfer rate are Qt~! and of the specific heat capacity. of a material
QM~T-L,

In this book, we shall discuss equations that contain the above parameters and also
others which may be more complex. Since apples cannot be added to oranges, it is obvious
that all separate terms in an algebraic or differential equation describing a physical or
chemical phenomenon must have the same dimensions. In other words, all such equations
must be dimensionally homogeneous. This is examined by writing the dimensions of all
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terms in the equation and ensuring, by algebraic manipulation, that the dimensions of all
terms, on both sides of the equation, are the same.

Whenever possible, it is most convenient to express mathematical correlations and other
equations in dimensionless form. This has led to the development of groupings of various
parameters in a system, called dimensionless numbers. For example, the well known Mach
number in aerodynamics is the ratio of the actual velocity of flow in a particular system
divided by the velocity of sound in the same fluid.

2.2, UNITS OF MEASUREMENT

In applying transport theory to the solution of engineering problems, the ultimate objective
is to calculate a specific number which can be used for designing or operating a process;
for example, we may wish to calculate the required gas flow rate in a heat-treating furnace
or the power rating of a compressor needed to do a certain job. In order to do this, we
must ensure that the units of measurement in all terms of the equation, or in a system of
equations, have been expressed homogeneously,

Unfortunately, in many problems the engineer-is faced with material properties and
other parameters which may be expressed in various units, such as grams, kilograms and
tons, for the dimension of mass, or in microns, centimeters, and meters, for the dimension of
length. The situation is worse in the US, the last nation in the world still dealing in ounces,
pounds, short tons, inches and feet; an operating problem may be stated in such “British”
units, while the material properties in the available handbooks are in metric.

It is therefore essential, before proceeding with numerical calculations in a certain prob-
lem, to ensure that the equations used are consistent in terms of the units used for the various
constants and variables. The use of the unit equation for replacing non-homogeneous units
in a equation will be demonstrated in examples throughout this book. Here is an illustration
of a very simple conversion of velocity units from cm/h to m/s:

720058 2

h 5
pﬂf m 1 Ao 1) m
720028 x [ 2 x — ) x [Z x — | =0.022.
,h"'x'(parwa)x(sx%OO) s

It can be seen that the ratios 1/100 and 1/3600 introduced in the left-hand side of the second
equation are the numerical equivalents of the unit conversion ratios of m/cm and h/s which
were used in order to make the required conversion.

In the metric system of units, length is expressed in centimeters (cm), mass in grams
(g) and time in seconds (s). This system is much more rational than the “British” system
of units (foot-pound-second) which is used in the US. However, in 1960, an even more
rationalized system was introduced: the SI system (Systdéme International des Unités). The
SI unit of length is the meter (m), of mass the kilogram (kg), and of time the second (s).
The SI units have been accepted nearly universally and are used predominantly in this book.

To make things a bit easier for the reader, Table Al in Appendix A at the end of the
book shows the SI units of nearly all the parameters to be used in this text. The same
tabulation shows the numerical conversion factors necessary for converting units from other
systems to the SI system. Also for convenience, Table A2 in the Appendix shows the values
of the physical constants to be used in the following chapters.
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2.3. DIMENSIONLESS NUMBERS

As will be discussed in later chapters, engineering correlations and graphs are best presented
in dimensionless form; they are then of more general use and independent of a particular
system of units. For example, a given length, L, in a conduit can be made dimensionless
by expressing it as a ratio of L/d., where d, is the diameter of the conduit. Also, the
rising temperature, T', of a metal piece inserted in a furnace can be made dimensionless by
expressing it as the ratio of (T" — T3)/(Ty — T3), where 77 is the initial temperature of the
metal and 7 the furnace temperature; expressed in this way, the temperature change will
range from 0 to 1.

It is equally convenient to express more complex quantities, such as velocities, forces
and energy terms in dimensionless form. We already mentioned the use of the Mach number
in aerodynamics to express the velocity of a body moving through a fluid by means of the
ratio u/u,, where u, is the velocity of sound in the fluid. A number of such dimenstonless
groups will be introduced in later chapters. A tabulation of the most important dimensionless
groups in rate phenomena is presented in Table 2.1.

Throughout the text, reference is made to the numerical values of transport properties,
such as viscosity, thermal conductivity and molecular diffusivity. Because of the paramount
importance of numbers in engineering, the emphasis in the examples presented in this book
will be on the correct manipulation of numbers. It is evident that when the numbers are not
right the best of theories is of little practical use.
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THREE

The Concept of Viscosity

Fluid flow plays a very important part in the processing of materials. Most processes are
based on the use of fluids either as raw materials, reagents, or heat transfer media. In
this book, we will see many examples of processes where the rates of heat transfer, mass
transfer and chemical reaction between two phases depend on the fluid flow phenomena in
the system. It is therefore necessary to start our study of rate phenomena in processing
systems by examining the motion of fluids.

3.1. DEFINITION AND MEASUREMENT OF VISCOSITY

The behavior of a fluid in flow is very much related to two intrinsic properties of the fluid:
density and viscosity. For example, a solid body moving through a gas has to overcome a
certain resistance which depends on the relative velocity between fluid and solid, the shape
of the solid, the density of the gas and its viscosity. The power required to move a fluid
through a conduit is a function of the fluid velocity, the diameter of the conduit and the
fluid density and viscosity.

The existence and nature of viscosity can be demonstrated by suspending two horizontal,
parallel plates in a liquid so that they are separated by a very small distance, Y (Fig. 3.1).
Now, if the upper plate is kept stationary while the lower plate is set to motion with a
velocity ug, the layer of liquid right next to this plate will also start to move. With time,
the motion of the bottom layer of fluid will cause the fluid layers higher up to also move.

As shown in Fig. 3.1, when steady-state conditions are established, the velocity of the
uppermost layer, which is in contact with the stationary plate, will also be zero, while the
bottom layer, in contact with the moving plate, will be moving with velocity ug. If we
measure the velocity distribution across the intermediate fluid layers, we find that velocity
changes linearly with distance y from the stationary plate:

Y
Uy = ‘u.oy. (3.1.1)

Assume that we can measure, e.g., by means of a calibrated spring or transducer, the
horizontal force (—Fz, Fig. 3.1) which must be applied, in the opposite direction to g, to
maintain the upper plate at rest; if we divide this force by the surface area of the plate, A,
we find that this ratio, called the shear stress, is proportional to the velocity of the lower
plate, ug, and inversely proportional to distance ¥ between the two plates

force Up Up
= sh tr: - = po 3.1.2
ron  Shear stress o< 75 = pur ( )

I3



14 N. 1. THEMELIS

\ A x
N y=0 |
h J

t=0; both plates at reat

M E
§i F_ >0
N at amall t, after lower

plate is set to motion

at velocity u,

B+
A\
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Figure 3.1. Change of velocity profile with time (upper plate stationary, lower plate velocity:
Upg).

As shown in (3.1.2), the proportionality constant between shear stress and the velocity
gradient up/Y is called the viscosity of the liquid, ;. Since at steady state conditions the
velocity profile between the two plates is linear, every infinitesimal segment of the line is
represented by the same relationship. Therefore, (3.1.2) can be expressed in differential
form: :
du
_ dy
The first subscript of the shear stress denotes the area on which the shear stress acts (here,
an area perpendicular to the y-axis and at distance y from the origin); the second subscript
represents the direction in which the shear stress acts (here, in the direction of velocity, ).
The negative sign expresses the fact that the shear stress is applied from a region of higher
velocity to a lower one (i.e., uz 3 < U3 and du, < 0).

Equation (3.1.3) is called the Newton’s law of viscosity and states that the shear stress
between adjacent fluid layers is proportional to the negative value of the velocity gradient
between the two layers.

An alternative interpretation can be given to (3.1.3) by noting, from elementary physics,
that

shear stress = 1y = — 2

(3.1.3)

force = mass X acceleration = massxchange in velocity/time = change in momentum/time.

Therefore, (3.1.3) also states that rhe rate of momentum transfer per unit area (i.e., the
shear stress) beiween two adjacent layers of fluid is proportional to the negative value of the
velocity gradient between them. .
In transport theory, the transport rate per unit surface area of a certain quantity (e.g.,
of mass, momentum, heat) is called flux; for example, the dimensions of mass flux are
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Figure 3.2. Tangential and normal stresses acting on three “visible” sides of a cubical element
(an additional nine stresses are acting on the other three sides).

Mt~1L—2, Also, the change of a certain quantity with distance is called gradient; for
example, the dimensions of the mass gradient are ML,
If we now divide and multiply the second term of (3.1.3) by the fluid density, we obtain

__h pduz\ g pdi,
Tynz - p ( dy ) - V( d‘y ) } (3.1.4)

and for an incompressible flow:

d{puz)
dy ’

Tyz =~V

(3.1.5)

which expresses the fact that the momentum flux is proportional to the negative value of the
gradient of mass flux.

In the above equation, we have introduced a new term, the ratio of fluid viscosity
to density, p/p. This ratio is called the kinematic viscosity of a fluid, v, and has the
dimensions of L2 t~1. As we shall see later, the properties of thermal diffusivity (Chapter
10) and molecular diffusivity (Chapter 14) have the same dimensions. Therefore, by analogy,
the kinematic viscosity is also referred to as the momentum diffusivity of the fluid, ie.,
the ability of the fluid to transport momentum.

The above discussion was based on unidirectional flow. However, it also applies for
the general case of flow in all three directions, z, y, and z, as illustrated in Fig. 3.2. The
stresses '

Ty,zy Ty,zy Txys Tzzy Tzze T2y

are called shear or tangential stresses. The stresses Tz, Ty,y, and 7. . are called normal
stresses and can be either compressive (+) or tensile (-).

By substituting the dimensions of force, area, length and velocity into (3.1.3) we find
that the dimensions of viscosity are M L~! t~1. In the metric system, the unit of viscosity
is the Poise (1 P =1 g cm~! s™1), which is subdivided into 100 centipoise (cP).

In the SI system, viscosity is expressed in kg m~! s71; however, sometimes viscosity
values are shown in terms of the equivalent units of N m~2 s or Pa s, where the Pascal (Pa)
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Table 3.1. Comparative Values of Viscosity of Some Gases and Liquids

Tempera- ) Momentum
ture, * Densi Viscosity diffusivity,
Fluid °C kg m kg s m™ m? s

Hydrogen 0 8.93 x 1072 8.40 x 10°° 9.41 x 107
20.7 8.30 x 1072 8.80 % 10°° 1.06 x 107
229 4.86 x 107 1.26 % 10°° 259 x 1074
490 3.19 x 102 1.67 % 10°° 5.24 % 107
825 2.22 x 1072 2.14 x 1075 9.64 x 107
Air 0 1.30 x 102 1.71 x 10°° 1.32x 107>
18 c e {122 x 10%) 1.83 x 107 1.50 x 107%
229 7.08 x 107 2.64 x 107 3.73 x 107
409 5.21 x 107! 3.41 x 107 6.55 x 107>
810 328 x 107! 4.42 x 107 1.35 x 1074
1134 2.53 x 10! 521 x 107 2.06 x 1071
Water 0 1.00 x 10° 1.79 x 107 1.79 x 1076
20 9.98 x 102 1.01 x 1072 1.01 x 1078
60 9.83 x 102 469 x 107 477 x 1077
100 9.58 x 10% 2.84 x 107 2.96 x 107
Molten iron 1550 7.21 x10° 6.70 x 1072 9.29 x 1077
1600 7.16 x 10° 6.10 x 107 8.52 x 107
1700 7.06 x 10° 5.60 x 1072 7.93 x 107
1800 6.96 x 10° 5.30 x 107 7.61 x 107
High-iron slag 1200 4.50 x 10° 3.50 x 107! 7.78 x 107>
Low-iron slag 1500 3.50 x 10° 5.00 x 107 1.43 x 10™

is the SI unit of pressure and is equal to 1 Newton per square meter (Table Al). The SI
unit of viscosity is equal to 10 Poise or 1000 centipoise.

All gases and most simple liquids, including liquid metals and other high-temperature
melts, obey Newton’s law of viscosity and are accordingly called Newtonian fluids. On the
other hand, polymer solutions, slurries, pastes, and paints are frequently “non-Newtonian™:
their viscosity depends on the applied shear and, for some fluids, also on the rate at which
a given shear is applied [1]. The viscosities and momentum diffusivities of some gases and
liquids of interest in the chemical processing of materials are compared in Table 3.1.

3.2. FACTORS AFFECTING VISCOSITY

The viscosity of Newtonian fluids is affected by temperature, pressure, and, in the case
of solutions and mixtures, by composition. The effect of pressure and temperature on the
viscosity of gases is illustrated in Fig. 3.3 which shows the viscosity of carbon dioxide as
a function of pressure and temperature [14). The lowest viscosity is reached (Fig. 3.3) at
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Figure 3.3. Viscosily of carbon dioxide as a function of pressure temperature and pressure
[14].

the critical temperature of carbon dioxide (7. = 304.1 K). This is the highest tempera-
ture at which a gaseous substance can exist in liquid form regardless of the pressure; the
corresponding critical pressure (F.) for CO3 is 73.8 bar (72.9 atin). As indicated in Fig.
3.3, at high ratios of T'/T,, pressure has little effect and the gas viscosity increases with
temperature, The plot of Fig. 3.3 is typical of the viscosity plots for other gases. The critical
temperatures and pressures of other compounds and elements can be found in the Chemical
Engineers’ Handbook [4] and other reference books.

3.2.1. Estimation of Gas Viscosities

When experimental data on the viscosity of a particular gas are not available, its viscosity
may be estimated from theoretical models. This topic has been extensively treated in other
texts, the most recent of which is The Properties of Gases and Liguids by Reid et al. [2]. In
general, the molecular theory of gases is sufficiently developed to allow the prediction of
transport properties. Therefore, the viscosity of gases may be estimated with an accuracy
sufficient for most engineering calculations, e.g., by using the following correlation for the
viscosity of quasi-spherical molecules [1,2]:

MT)Uz

=26.7% 107" ( 3.2.1
p o2, (3.2.1)
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Figure 3.4. Effect of temperalure on collision integral [2].

where p is the gas viscosity, Poise; M is the molecular weight, grams; 7' is absolute
temperature, K; o, is the collision diameter, A; §2,, is the collision integral (equal to 1 for
noninteracting molecules). '

As shown in Fig. 3.4 [2], the value of 2, is a function of the group:

T™ = E, (3.2.2)
£
where k is Boltzmann’s constant (1.38 x 1022 joules molecule~! X~, Table A2), and ¢ is
an energy parameter for interaction between molecules (units: kg m? s~2 molecule™?!). Nu-
merical values of o, and ¢ are available in the literature for most common gases; otherwise,
the following empirical formulae may be used for estimating these quantities:

e/k = 1.92T, and o, = 1.222V2/3, (3.2.3)

e/k = 1.15T; and o, = 1.166V, /%, (3.2.4)

p———
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Figure 3.5. Viscosities of common gases as a funclion of temperature {(after [6]).

where T, and T}, are the melting and boiling points of the substance in K; V;, is the molar
volume of the species at the melting point (solid), and V} its molar volume at the boiling
point (liquid), both expressed in cm® mol~!. The molecular volumes of some liquid metals
are shown in Table 14.3 (Chapter 14).

The effect of temperature on the viscosity of some commonly used gases is shown in
Fig. 3.5 [6]. With regard to the viscosity of mixtures of gases, the following semi-empirical
equation can be used to represent with reasonable accuracy the viscosity of a gas mixture
at low or moderate pressures:

X X (M)
Hmix = EX;(M{)112 H

(3.2.5)

where X; is the mole fraction of component ¢ of viscosity u;, and M; is the molecular
weight of component 1.
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Figure 3.6, Effect of temperature on viscosity of silica [5].

~ The use of such equations for predicting the viscosity is illustrated in the following
example.

Example 3.2.1

Let us estimate the viscosity of a gas mixture consisting of 20% Zn vapor, 50% N», and
30% CO at 1000°C. ,
The density of zinc at its melting point (T}, = 692 K) is approximately 7.14 g cm™3. ¥
Therefore, its molar volume at that temperature is calculated to be = 65.38/7.14 = 9.16
cm3/mole and the cormresponding o, = 2.56 A (see (3.2.3)). Also from (3.2.3) we obtain
gfk = 1.92 x 692 = 1329. Therefore, at a given temperature of 1273 K, the value of T*
is calculated to be equal to 0.958, and log T* = —0.019. From Fig. 3.4, the corresponding

value of logQ?,, is approximately 0.21, and , = 1.63. By introducing the calculated values
of g and Q, in (3.2.1), we obtain the viscosity of zinc:

_26.7 x 107%(65.37 x 1273)%°
- 2.552 x 1.63

BZn = 727 x 107° Poise.
Also, from the available compilations for gas viscosities, we obtain

jin, = 500 x 10° P psco = 480 x 107° P.
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Figure 3.7. Viscosity of various liquids [17].

We can now set up the following table and use (3.2.5), to calculate the viscosity of the
gas mixture:

-6 :
Bmix = 3262 1077 _ 5sg x 107 P.
5.85
Mole
Species  fraction M W, P XiMY? XiM¥p .
Zn 02 65.37 727 x 107 1.62 1178 x 10°¢
N, 0.5 28.02 500 x 107 2.65 1323 x 10°¢
cO 03 28.00 - 480 x 1078 1.59 761 x 107¢

b _ 5.85 3262 x 107




22 N. J. TREMELIS

T, °C
1200 800.600 400 300 100

O
%\

30.0}
20.0} /

10.01

50.0

1.0f
0.7t
Q.5

1 | N, —_— . . R
i0 15 20 25

10000/T , K*

Figure 3.8. Viscosity of molten salts [13].

3.2.2. Estimation of Liquid Viscosities

Models for predicting liquid viscosities are much less developed than for gases and their
use is limited to a qualitative description of observed behavior. The behavior of lignids is
markedly different from gases in that the viscosity decreases with increasing temperature;
the relationship can be expressed in the form of an Arrhenius-type equation

= pge®e /T (3.2.6)

where pq is the viscosity-at some reference temperature, and E, is the temperature coefficient
for viscosity.

The viscosity temperature coefficient, B, has the physical significance of activation
energy (AG,, is the Gibbs free energy, Chapter 18), so that the mobility (1/p) of liquid
molecules is a temperature-activated process while that of gas molecules is not. An example
of the Arrhenius-type dependence of viscosity on temperature is given in Fig.”3.6 for pure
silica [5]. Figures 3.7 [17] and 3.8 [13] show a similar behavior for a large number of
metals, fused salts, and other liquids of interest in materials processing.

The dependence of viscosity on the composition of liquid solutions is illustrated by Fig.
3.9 for molten zinc/aluminum solutions [7]; and by Fig. 3.10 for iron-carbon alloys [8]. It
can be seen that the behavior of molten alloys cannot be described by simple addition rules.

In many materials processing systems, it is of considerable importance to maintain
liquid viscosities at a sufficiently low level so as to ensure satisfactory mass transfer rates
and to facilitate charging and discharging of liquid materials. In the case of some liquids,
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Figure 3.9. Viscosity of zinc—aluminum liquid solutions [7].

such as metal oxide and silica solutions (slags), this minimum viscosity may exist only over
~ a very narrow composition range so that very careful control may be required.

In the pyrometallurgical production of metals, the unwanted components in the raw
feed are driven off either as gaseous components (e.g., SOz or CO3) or in the form of a
liquid silicate solution (“slag™). Because of the importance of slag fluidity in metallurgical
processes, there have been many experimental investigations of slag viscosity. In addition
to SiOg, steelmaking slags contain CaO, MgO, Al,O; and other compounds in smaller
concentrations. Pure silica has a very high viscosity (Fig. 35 but the addition of other
metal oxides, with the exception of AloQj3, decreases the slag viscosity. At low alumina
concentrations, Al,Oj3 is equivalent to SiQOz but at Xa;,0, {mole fraction of alumina in
solution) above 0.05, its effect depends on the molar ratio of AlpO3/{(CaO + MgO) present
in the slag (Fig. 3.11, [9]). Once the effective concentration of X a1,0,,.q is established, it
can be added to the Xg;0, content of the slag and Fig. 3.12 [9] can be used to determine
the viscosity of a particular slag.

Example 3.2.2 .

A blast furnace slag at 1500°C contains 39.8% CaQ, 2.5% MgO, 15.2% Al,O3; and 40.7%
SiOs (by weight). Use the plots of Figs. 3.11 and 3.12 to estimate slag viscosity.

2
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Figure 3.11. Silica equivalence of alumina in CaO-Al03-8iOs, melts, 1500-1800°C [9].

From the given composition, we calculate the molar composition of the slag to be as
follows:

Xcao = 0.44, Xmzo = 0.04, Xay,0, = 0.09, Xgio, = 0.42.
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Figure 3.12. Effecl of composition on viscosity of CaO-MgO-Al303-Si0-, melts, 1500°C~
1800°C [9].

Also, we calculate the ratio Xa1,0,/(Xca0 +XMgo) to be equal to 0.19. Figure 3.11 shows
that at this ratio and for Xa,0, = 0.09, the value of Xa1,0,,¢q is about 0.14; reference
to Fig. 3.12 shows that the viscosity of the slag containing Xsio, + XA1,04,¢q = 0.56 is
approximately 7 Poise.

In contrast to slags produced in the ironmaking process, slags from non-ferrous smelting
(production of Cu, Pb, Zn, Ni, etc.) contain a large amount of iron as FeO and Fe3O4 and
are usually more fluid than steelmaking slags; the iron content of copper smelting slags is
in the range of 30 to 45% Fe. )

Work by Johannsen and Wiese [10] on synthetic copper smelting slags has shown that
FeO, Ca0, MgO, and Fe304 have an equivalent effect on viscosity; also, in the concentration
range encountered in copper production, the effects of silica and alumina are additive. These
data were correlated (11]1 by means of a “viscosity modulus,” K, which was defined as
follows:

P %Fe0 + %Fe;04 + %Ca0 + %MgO (3.2.7)

v %Si0z + %Al1203 ' -
The resulting plot is shown in Fig. 3.13[11], which also shows the wide variation
between the viscosity of synthetic slags and industrial slags which contain other impurities

{10]. Other metal oxides, such as copper and zinc, may be included in the numerator of the
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(3.2.7). Manganese and chro%ium oxides may be assumed to act as Al,O3 and be included
in the denominator. A recent study by Battle and Hager [12] has confirmed the usefulness

of a similar slag modulus for estimating the viscosity of lead and zinc smelting slags (Fig.
3.14). -
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FOUR

Steady-State Unidirectional Flow

In this chapter, we shall examine how to use Newton's law of viscosity (equation (3.1.3)) to
determine velocities in steady-state flow of an incompressible fluid (i.e., of constant density)
in the direction z. To simplify matters further, we will consider conduits of constant cross
sectional area, such as pipes.

4.1. GENERAL APPROACH

The general strategy is similar to the one we will use in Chapter 5 for more complex
problems: We consider an infinitesimal volume element of the fluid and apply to it Newzon's
law of the conservation of energy:

rate of momentum accumulation in element

= transport rate of momentum in

(4.1.1)
— transport rate of momentum out

+ sum of forces acting on element.

Since we are concerned with steady state flow, the rate of momentum accumulation is
zero and the energy balance of (4.1.1) becomes:

transport rate of momentum out
— transport rate of momentum in (4.1.2)
= sum of forces acting on element.

In order to express this balance mathematically for a volume element of the fluid, we
need to express the transport rates of momentum, in and out of the element, in terms of the
momentum flux acting on a particular surface of the volume element times the area of the
surface on which the flux is acting.

Since we are considering a conduit of constant cross section and the fluid is incom-
pressible, there can be no change in the velocity profile along the direction z of flow (Fig.
4.1). Therefore, the momentum carried by the fluid entering the differential volume element
at location z must be equal to the momentum of the fluid going out at location z + dz.
Consequently, the only net momentum flux in and out of the element is that due to the

28
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Figure 4.1. Velecity profile in flow belween parallel plates.

viscous shear stress, 7 -, acting between adjacent layers of fluid in the direction y, due to
the gradient of the velocity u, with respect to y.

To calculate the transport rate of momentum which we need for (4.1.2), we must
multiply the momentum flux due to shear stress by the area over which the shear stress acts,
here the sides dz + dz of the volume element.

Also, let us assume that the force acting on the fluid element and in the z-direction, F,
is a body force such as gravity which is proportional to the mass of the element; therefore,
it is expressed in terms of force/unit volume.

By substituting the above mathematical expressions in the statement of (4.1.2) we obtain
the following momentum balance for the differential volume element dz - dy - dz:

[(Ty,2)y+dy — (Ty,2)y] (dz d2) = Fp(dz dy dz). (4.1.3)

However, by mathematical definition,

dry -
(T‘yﬂ)y+dy = (Ty,:l:)y + dE; dy. (4.1.4)

By substituting from the above identity in (4.1.3), eliminating the two redundant terms and
dividing both sides of the equation by dz - dy - dz, we obtain the following equation:

dry
dy le ( 1 5)

and by replacing the shear stress by Newton’s law of viscosity (3.1.3), we obtain

du,
7 e F,. (4.1..6)
The solution of the above second-order ordinary differential equation requires two
boundary conditions. Therefore, it is necessary to specify the velocity or the velocity gradient
at two of the appropriate bounding surfaces. In the simple problems to be discussed in this
chapter, the only forces acting on the control volume element are the gravity force acting
on its volume and the pressure force acting on some of its surfaces.
It must be noted that the formulations and solutions to be presented in this section are
valid only for situations where the flow is laminar. The differences between laminar and
turbulent flows will be discussed in Chapter 7. '
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4.2. LAMINAR FLOW BETWEEN PARALLEL PLATES

We first consider the simplest possible case of unidirectional fluid flow, in the z-direction,
between two horizontal infinite parallel plates separated by a distance 2¢ (Fig. 4.1). For
convenience, in this case we select the control volume to be of unit width (i.e., dz = 1),
of a small finite length Az (in the x direction), and of infinitesimal height dy (in the y
direction).

Since the fluid flow is in the horizontal direction, the only force acting on the fluid in
this case is due to the pressure differential P, — Py (i:e., —AP) across the length Az of
the control volume. Pressure has the dimensions of force/area and the net pressure force
(literally the force due to pressure} acting on the control volume of Fig. 4.1 is obtained by
multiplying the pressure difference, —A P, by the surface area over which —AP acts, ie.,
the sides 1 - dy of the control element which are perpendicular to the direction of flow:

net force = —AP(1 - dy). (4.2.1)

As discussed in §4.1, the change of rate of momentum within the control volume is
equal to momentum flux leaving the control volume across the ¥ + dy plane minus the
momentum entering the control volume at the y plane times the area of the sides 1 - Az of
the control volume. By equating this change in rate of momentum to the pressure force (see
(4.1.3)) we obtain

[(Ty,e)y+ay = (Ty,z)y] (1 - Az) = —AP(1 - dy), (4.2.2)
which, on the basis of (4.1.4), can be simplified to

ATyz _ AP

=—— 4.2.
dy Azx (4.2.3)

Finally, by substituting for the shear stress from Newton’s law of viscosity (see (3.1.3))
we obtain an equation which relates the velocity distribution between the two plates to the
fluid viscosity and the net force acting on the fluid:

d’u, AP

Az

[ (4.2.4)

In order to solve this differential equation, we need two boundary conditions. These
are supplied by considering that the fluid velocity next to the two plates is zero:

u, =0 at y = *a.
By integrating (4.2.4) for the above boundary conditions we obtain

__L AP, , o
vl (e — y*). (4.2.5)
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Figure 4.2. Velocity profile in open channel flow.

The parabolic velocity profile expressed by (4.2.5) is plotted in Fig. 4.1. It can be seen’
that the velocity has its maximum value at 3 = 0 and at that point, du./dy = 0.

4.3. FLOW IN AN OPEN CHANNEL

We now consider fluid flow in a section of a horizontal open channel (Fig. 4.2) of liquid
depth e, and of sufficient width (in the z direction, Az = 1) so that edge or corner effects
may be neglected. In this case, flow occurs because liquid is added at one end of the
channel (left of Fig. 4.2) and removed, at the safé rate, at the other end; thus, a surface
level gradient is established across the length of the channel and causes flow. By equating
the change of momentum to the net driving force, as in the previous example, we ‘obtain

a2, Aa
a7 = pg— (4.3.1)

H Az’
where Aa/Axz is the change in liquid depth with distance z along the length of the channel.
In this case, the boundary conditions are obtained from consideration of the following
physical facts:
a. The velocity is zero at the bottom surface of the channel, ie., u, = 0 at
Y= 0. .
b. Because the air viscosity, above the liquid surface, is negligible in compar-
ison to that of the liquid, the shear stress transmitted at the free surface of
the channel can be neglected; therefore

\ 4
.d;; =0 at y=g'

By integrating (4.3.1) for the above boundary conditions, we obtain

_ _Pg Aa o2
U=y Am(2ay ¥°) (4.3.2)

As illustrated in Fig. 4.2, the resulting velocity profile is parabolic and the maximum
velocity occurs at the free surface of the liquid.

4.4. FLOW OF A FLUID ON AN INCLINED PLATE

We now consider the flow of a fluid under the force of gravity, along an inclined flat plate
placed at an angle to the horizontal plane (Fig. 4.3). The only force acting on the fiuid, in
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this case, is gravity. By establishing a control volume, 1 - Az - dy, as in the previous two
examples, we obtain

[(y,edy+ay — (Ty,e)y] (1 Az) = pgsina(l - Az dy), (4.4.1)
d;zz = pgsina, (4.4.2)

where pg sin a represents the gravitational force in the direction z paralle! to the plate. By
substituting from Newton’s law of viscosity (equation (3.1.3)), we obtain

L

(4.4.3)

The boundary conditions for this equation are: u, = 0 at y = 0 (zero velocity of fluid at
the plate surface) and

t;l'u,z
dy =0 at y=a,

i.e., the velocity gradient at the surface of the liquid (¥ = a) is zero. Integration of (4.4.3)
for these boundary conditions yields:

sm’
_ pgsuro
(/a.'y 7%) (4.4.4)
which shows that the maximum fluid velocity occurs at ¥ = a and its value is
_Pg pgsina
a2
max 4.4.5
u = (4.45)

Since the flow is assumed to be unidirectional, the average velocity over the depth of
the film is expressed as follows:

Y=o
1
Uave = — ] Ug Y, (4.4.6)
y=0

and by substituting for 1, from (4.4.4) and integrating:

__pgsing 2
ave = ——— 4.4.7

The average thickness of the film, a, will depend on the flow rate of liquid per unit width
at the top of the inclined plate. Its value can be obtained by dividing the volumetric flow rate
per unit width of the plate by the average flow velocity (equation (4.4.7)). Alternatively, if
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Figure 4.4. Velocity profile in a cylindrical conduit.

the thickness of the film can be measured, the volumetric flow rate and the averagc velocity
can be calculated from it.

4.5. FLOW THROUGH A CYLINDRICAL CONDUIT

We now consider the laminar flow of a fluid through a horizontal cylindrical tube of radius
ro. In this case, the control volume is assumed to be a cylindrical shell of radius r, of
infinitesimal thickness dr and of finite length Az (Fig. 4.4). As in the previous cases, the
differential change of momentum is expressed by the product of the shear stress times the
surface area over which this stress acts:

d[7sz(277 Az)).

Also, the net force acting on the control volume is pressure difference —AP along finite
length Ax times the cross-sectional area of the element perpendicular to the direction of
flow:

—AP (2nr dr).
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By equating the change of transport rate of momentum to the net acting force, we obtain

d(rr,l..,‘.)(27r Az) = —AP(2ardr). (4.5.1)
o d( ) AP
TTrlx —
e (4.5.2)

We now replace the shear stress in the above equation by Newton’s law of viscosity
(see (3.1.3))

du,
ryer — — - 4.5.
to obtain p p AP
U

which is then integrated to yield

du, 1 AP Ch
= —— — 4.5.5
dr  2u Az Tt ur' ( )

and
1 AP,

ba = 4 Az

where C) and C; are integration constants. Their values can be determined on the basis of
the following considerations:
a. velocity is zero at the wall of the conduit, i.e., u; =0 at r = rg;
b. as in the case of flow between parallel plates (§4.2), the velocity has its
maximum value at the center; therefore du./dr =0atr =0and C; =0
(see (4.5.5)).
From (4.5.6) and boundary condition a, we also conclude that

—r + % Inr + Cs, (4.5.6)

2
_ __Tc AP
C]_—O&Ilng— 4,UA:'B'

Therefore, the velocity profile in a cylindrical conduit is expressed by

1 AP, ,
= _LAP L o 457
u 4” Ax (?‘0 T ) ( )

It can be seen that the velocity profile is parabolic with distance from the center of the
conduit and that the maximum velocity occurs at the center {r = 0): :

2
r2 AP
= 4.5.
Uz max 4)'1- Ar ( 58)

The volumetric flow rate in the conduit can be calculated by integrating the product of

the velocity (equation (4.5.7)) and the differential cross-sectional area of flow corresponding
to dr:
o
ary AP
)= [ ux(2rrdr) = ——2 —. 4.5.9
v / U (277 dr) 8 Az ( )
0
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The above equation is frequently referred to as the Hagen-Poiseuille equation.
The average velocity in the conduit is obtained by dividing the volumetric flow rate by
the cross-sectional area available for flow: -

: 2

) 5 AP
— = 4.5.1
7ra 8u Az (45.10)

Uave =

As noted above, finite pressure ‘gradient —AP/Az in the above equations represents
the change in pressure along length L of the conduit:

_AP_Pl—Pg
Az L

where P, and P, are the corresponding pressures at the beginning and end of L.
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The Differential Equations of Flow

In Chapter 4, we used Newton's law of conservation of energy and the definition of viscosity
to determine the velocity distribution in steady-state, unidirectional flow through a conduit.
In this chapter, we shall examine the application of the same laws in the general case
of three-dimensional, unsteady state flow. We will do so by developing and solving the
differential equations of flow. These equations are very useful when detailed information on
a flow system is required, such as the velocity, temperature and concentration profiles.

The differential equations of flow are derived by considering a differential volume
element of fluid and describing mathematically

a. the conservation of mass of fluid entering and leaving the control volume;
the resulting mass balance is called the equation of continuity.

b. the conservation of momentum entering and leaving the control volume; this
energy balance is called the equation of motion.

In describing the momentum of a fluid, we should note that in the case of a solid body,
its mass is readily defined and has the dimension M; the same is true for its momentum
which has the dimensions of M L t~1. However, in the case of a fluid, we are dealing with
a continoum and the only way to define mass at any given location is in terms of mass
flux, i.e., mass transport rate per unit cross-sectional area through which flow occurs. This
quantity is equal to the product of density of the fluid times its velocity (pu) and has the
dimensions of M t=! L2, For the same reasons, the momentum of a fluid is expressed in
terms of momentum flux (pu 1), i.e., the transport rate of momentum per unit cross-sectional
area (M t~2 L) _

In three-dimensional flow, the mass flux has three components (z, ¥, and z) and the
velocity also three (u., 4y, and u); therefore, in order to express momentum, we need to
consider a total of nine terms.

5.1. THE EQUATION OF CONTINUITY

We consider an infinitesimal cubical element dx - dy - dz (Fig. 5.1) in the three-dimensional
flow of a fluid in a vessel. The mass conservation of fluid passing through this element is

stated as follows: . o
rate of mass accumulation within element

= transport rate of mass in (5.1.1)
— transport rate of mass out. ‘

37
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Figure 5.1. Material balance on a cubical control element.

The transport rate of mass into the element at location = and through the face dy - dz
of the element is equal to

mass flux of fluid in z-direction x surface area of face dy - dz,

o (puz)=(dy dz). (5.1.2)

Similarly,-thc transport rate of mass out of the element at location = -+ d= and through
face dy - dz is expressed by

(pu;)g.,.dz(dy dz) = [(puz)m + 8;% dz| (dydz). (5.1.3)

The only way that mass can be accumulated (or depleted) within the control volume is
by a corresponding change in the fluid density. Mathematically, the rate of accumulation is
expressed as follows: '

%’:(da: dy dz). - (5.1.4)

By substituting from (5.1.2)5.1.4) into conservation equation (5.1.1) and eliminating
redundant terms, we obtain

% . _ _Bpus

" oz

In the above derivation, we used partial differentials because we dealt only with the z-

component of velocity. Of course, the same considerations apply to the y- and z-components.

Therefore, the general equation of continuity in three-dimensional flow is expressed as

(5.1.5)

follows: 3 5 5 5
p puz  Opuy  Opu,
—_—— = 5.1.6
ot ( 5z | Oy * 5z ) ! ( )
or in abbreviated vector notation 3
L=V (5.1.7)

ot
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where u is the velocity vector and V - pu is called the divergence of quantity- pu.
By differentiating the product terms on the right-hand side of (5.1.6) and then collecting
all derivatives of density on the left-hand side, we obtain:

Op dp Op dp . Ou, Ouy Ou, -
ot Tae Thay e, T TP\ Tay T8z ) (5.1.8)

The left side of (5.1.8) is called the substantial time derivative of density. In a
physical sense, the substantial time derivative of a quantity designates its time derivative
(i.e., rate of change) evaluated along a path that follows the motion of the fluid (streamline,
Chapter 6). In general terms, the substantial time derivative of a variable w is defined by

. the following expression:

D(w) 0w Bw Ow ow '
Dt "ot g Tey t e (51.9.)

Therefore, (5.1.8) can be expressed in abbreviated vector notation as follows:

Dp
— =—pV-u 1.
Dt oV -u (5.1.10)
Equations (5.1.8) and (5.1.10) describe the rate of change of density as observed by
someone who is moving along with the fluid. For steady state conditions, there is no mass
accumulation and the equation of continuity becomes

Opur  Opuy  Opu.
Oz + by + 0z

=0, (5.1.11)

and for an incompressible fiuid (i.e., for negligible variation in density of fluid)

Our, | Ouy  Ou,
T oy T (5.1.12)

5.2, THE EQUATION OF MOTION

To develop the equation of motion, we start from Newton’s law of conservation of energy:

rate of momentum accumulation

= transport rate of momentum in

(5.2.1)
— transport rate of momentum out

+ sum of forces acting on element.

In order to express this equation mathematically, we must consider that momentum is
transported in and out of the element in two ways:

a. convective transport of momentum is by means of the kinetic energy of the fluid mass
moving in and out of the six faces of our cubical element. Thus, the convective transport
of momentum in the z-direction (z-momentum) consists of three terms:

(puz)uz, (puyluc, (pu.)us.
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Figure 5.2. Mechanical energy balance on a cubical control element.

The net convective transport of z-momentum through the faces dy - dz of the cubical
element dz - dy- dz (Fig. 5.2) is

[(puz)us — (puz)uctac) (dy dz) = _Opusts (dz dy d2). (5.2.2)

oz

Similarly, the net convective transport of z-momentum through the faces dz - dz and
dz - dy of the element is represented by terms

Opuyus

~ 5y (dz dy dz), (5.2.3)
Opuzu. .

——az—'(d.’l? d'de), (5.24)

Of course, there are six more symmetrical terms for convective transport of momentum
in the y- and z-directions of flow.

b. diffusive transport of momentum also takes place at the six surfaces of the cubical
element (Fig. 5.2) by means of the viscous shear stresses, Thus, the net diffusive transport
of momentum in the g-direction through the faces dy - dz of the element is

ez (4 dy da). (5.2.5)

[(a,0)e = (Taye)zas] (dy do) = ===

Similarly, the net diffusive transport of momentum in the z-direction through the faces
dz - dz and dz - dy is expressed by terms

—2=(dx dy dz), (5.2;6)
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a" T2z (g dy dz) (5.2.7)

There are six more symmetrical terms for diffusive transport of momentum in the y- and
z-directions of flow.

We now consider the forces acting on the control volume of Fig. 5.2. The net pressure
force acting on the faces dy - dz of the element (i.e., the faces normal to the z-direction) is

a -
(Py — Poras)(dy d2) = ‘EI_; (dz dy dz). (5.2.8)

There are two more symmetrical terms for the pressure on the faces dz - dz and dx - dy of
the element.

The other force acting on the element is gravity; this is a body force and is equal to the
density of the fluid times the volume of the element (i.e., its mass) times the gravitational
acceleration. In the z-direction, the gravity force is expressed as follows:

(pgz)(dz dy dz), (5.2.9)

where g, is the component of the gravitational acceleration in the z-direction. There are
two more symmetrical terms for the g, and the g, components of gravity.

In developing equation of continuity (5.1.6), we showed that the rate of accumulation
of mass in the control element was equal to the time differential of density times the volume
of the element. Similarly, the rate of accumulation of momentum in the z-direction is

expressed by
6pfu= ———Z(dz dy dz). (5.2.10)
There are two more symmetrical terms for the y- and z-directions of momentum.
We now have mathematical expressions for all the terms of (5.2.1). By substitution

and elimination of redundant terms, we obtain the following equation for the equation of
motion in the z-direction of momentum:

Opu, B (8pu=u= + Opuy s + apu,uz)

ot dz Sy 0z
5.2.11
_ [ O7ee 4 0Ty .z + 07:2\ 8P + ( )
Oz By 3z | Bz P9
in the y-direction of momentum:
dpuy Opuzuy = Opuyu, Opuuy
= — + +
ot Oz dy Oz
(5.2.12)
[ 0Tay " 0Ty y + 875\ _OP 4
Oz Oy 0z By Phys
and in the z-direction of momentum:
dpu. Opuzu: Opugu. Opu,u.
8 - \ 8z T 8y ' oz
(5.2.13)

_ {07z, + 87y - + dr.:\ _oP +
3z Oy Oz 5z P9
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Figure 5.3. Cylindrical and spherical coordinates.

The above equations of motion can be expressed more conveniently in vector notation
as 5 '
% =—V-puu—-V -v—VP+pg, (5.2.14)

where the bold type indicates vector quantities. It should be noted that if, in addition to
gravity, there were other “body” forces acting on the fluid (e.g., an electromagnetic force),
their effect would be added to the gravitational components.

The vectorial shear stress in (5.2.14) represents six shear stresses (i.e., acting in the
direction of flow) and three normal stresses (i.e., compressive or tensile stresses normal to
the direction of flow). Mathematically, these stresses are expressed as follows (3):
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;g = 3u=+?_t_l_y
oy — Ty T “’ ay a:z )

Juy  Ou,
Ty,z = Tzy = — U §+a—y ’
Ou, + Bu,
oz 8z /-

Shear siresses.

Tze = Ta,z= —H (

Normal stresses:

Ju, 2

Tz,z—_,u(za —EV‘H),
Ou, 2

Tyy = — 4 (2a—y' - §V : u) ' (5.2.15)
Ou, 2

Tz,z = —f (2 Bz - EV H)

For an incompressible flow (i.e., when changes in density are negligible), we can
differentiate each component of convective momentum in the equation of motion (5.2.11)-
(5.2.13) as follows:

Opuy Oy du.
5z %5 Py 8z’
By eliminating the following terms (see (5.1.12))

" 3u=+8uy+3uz —0
Phu\ "oz oy 9z ,) '

(5.2.16)

and moving the remaining convective momentum terms to the left-hand side of (5.2.11)
(5.2.13), we obtain the following simplified equation for the z-momentum balance:

fu, + Ou. tu Ou + Ouz )
P\&t "z T ey T ez ) T
(ar:,z 87y 31‘,m) aP

—~ + + =2 -

8z 8y 0z 5z | P9=

(5.2.17)

The left-hand side of (5.2.17) will be recognized by the reader as the substantial time
derivative of velocity, as defined earlier (equation (5.1.8)). Therefore, (5.2.17) for all three
dimensions is expressed as follows in vector notation:

% =-V-1—-VP +pg. (5.2.18)
Table 5.1 shows the general equations of motion for incompressible flow in the three
principal coordinate systems: rectangular, cylindrical and spherical. The angles shown in the
last two systems are defined in Fig. 5.3. It can be seen that the complexity of these equations
increases from rectangular to spherical coordinates. The reason is obvious: In rectangular
coordinates, the cross-sectional area of flow does not change in all three dimensions; in
cylindrical coordinates, this area does not change in the z-dimension; and in spherical, the
cross-sectional area of flow changes in all three dimensions.
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Table 5.1. General Equations of Motion

Rectangular coordinates, (x, y,; z):

Oz |y Bz g Pix , Ous
ot ez "Wy T s

Oty \ o, By oy B gy, B0
p(at +u’6: +t|:,‘fa 4+, CP

(8u,+ 3u=+ ?&_}. %
at ez T ey e

[ O7zz + O7y.z + b1\ ©OF +
8z By oz 9z Pg=s

b1,y  Or.,\ OP
oz ay + Bz) oy S

07z 2 + B1y2 + 87:,:) 6P +
az ' 8y | bz 5z P9

0
N
D
X
@
+

I
|
~—

Cylindrical coordinates, {r, 6, z):

Bu, Su, up Du, ul Bu.\ 18(r,) 1819 mp  Br: oP
( Br )""(; ar 1 58 r Tz )T T

dup Oupg  up Bug 1I.l,.1..lp Bug _ 1 8(1‘21'r‘g) 1 31’3,8 a'rg., 18P
(%T-F " or +?W+ T +u’32)__(r2 8- Tr 80 T oz ) rag e

Su, Bu. ug Ou; Bu.\ _ 18(rr.) 101, 31}.,) ar
(6t e 50 T Bz)_ (r ar) ‘r 88 T 8z ) Bz TP

Spherical coordinates, (r, 9, ¢}

Bu, Bu, up Bur  ug Bu, u3 +ud
('E“"E*‘ r o8 +rsin9 8¢ T

1 8ra et 7¢.¢) arP
= ( (1'2 r.r) + — rsmﬁ ag(fra sinf} + ronf 3¢ - = B + P,
aua Bus , . 31:9 + ug 3‘!19 + Uy % ety uﬁ cot @
d Yo T 56 " rsnd 0p ' 1 r
1 Ome  Trp coth 1 8P
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For incompressible Newtonian fluids at constant viscosity, the general equations of
motion can be simplified further by replacing the shear stress functions by Newton’s law of
viscosity. Thus, (5.2.1%) becomes

Buz 61!.:: auz 611.,;
p(at + Uy 5z + uy 5y + U Bz):
u, u, %*u, apP

“( gz ay? * o2 ) T ag P9

(5.2.19)

dx

This equation, and the symmetric equations for the - and z-components of momentum, are
called the Navier—Stokes equations of flow. In vector notation, they are expressed as:

D ~
pF: = uViu— VP + pg. (5.2.20)
In cases where the viscous effects can be considered to be negligible, the Navier—Stokes
equations may be written as follows:

Du
— =-VP . 5.2.
P D VP +pg (5.2.21)
This equation is known as the Euler equation. In the case of very slow motion, such as the
flow of glass in a melting furnace, the inertia terms in the Navier—Stokes equations may be
neglected to yield:
VP = uVu + pg. (5.2.22)

In the following chapter we illustrate the manner in which the differential equations of flow
can be solved to provide detailed information on the microstructure of flow systems.
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SIX

Applications of the Differential
Equations of Flow

In this chapter, we discuss some applications of the differential equations of continuity and
motion which were developed in Chapter 5.

6.1. FLOW IN IDEAL FLUIDS

All fluids have a certain viscosity. However, in some cases of fluid flow, the effect of
viscosity on fluid flow may be considered to be negligible in comparison to other forces. -
Also, if the variation in the density of a fluid within the region of interest is very small, the
fluid may be considered to be incompressiblé. Incompressible fluids, under circumstances
where the viscous effects are negligible, are said to behave as ideal fluids. For example,
the assumption of ideality may be made in cases where the region of interest is away from
boundary surfaces and in the absence of recirculating flows.

In chemical and metal processing, the flow of liquids through nozzles and of liquid
jets impinging on flat surfaces are examples of near-ideal fluid behavior. The assumption
of ideal flow can simplify considerably the solution of the Navier—Stokes equations.

6.1.1. The Concept of Vorticity

In some cases of fluid flow, it is convenient to introduce the concept of vorticity, which is
a measure of the rotation or angular velocity of a fluid element. For instance, let us imagine
a small, frictionless paddle wheel which is placed in a flow field of uniform velocity,
away from wall surfaces that create shear stresses. As illustrated in Fig. 6.1a, under these
circumstances, all paddle surfaces across the fluid flow would be exposed to the same
velocity and the wheel would not turn. On the other hand, if the paddle wheel were placed
in flow through an open channel, where a velocity distribution exists (Fig. 6.1b), different
paddles would be exposed to different flow velocities and the wheel would rotate.

The first kind of flow is called irrotational. An interesting parallel of such motion is
that followed by the gondolas on a ferris wheel: each gondola follows a circular path as the
wheel turns but the gondola does not rotate with respect to the earth.

For a fluid moving in the z-direction, the vorticity or angular velocity about the z-
axis is defined as the average rate of twisting of a fluid element in the y and z planes.
Mathematically, this angular velocity is expressed as follows:

1 {8u. Ouy
Wy = %( 5y 52 ) . (6.1.1)

47
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Figure 6.1. Illustration of irrotational () and rotational (b) flow.

In three-dimensional flow, the degree of rotation of a fluid element is expressed as follows:

du, Ou du Ou- Bu du
=i L) g (D DY -y _Z= 6.1.2
1(3y 8z)+‘?(3z Bz)-l_k(aa: ay)’ ( )
‘where %, 7, and & are unit vectors in the z-, y-, and z-directions, respectively.
It should be noted that the angular velocity components are related only to the viscosity

terms of the Navier—Stokes equations. Therefore, away from the boundary layers which are
formed near surfaces, the bulk flow in many systems may be assumed to be irrotational, i.e.,

w= w; +wy +w: =0. (6.1.3)

6.1.2. The Concept of the Stream Function

As discussed earlier, the velocity field in the general case of three-dimensional flow can
be represented by means of the velocity components, %, %y, and u.. In flow that can be
represented adequately in two dimensions, e.g., flow in an axisymmetric, cylindrical system,
it is sometimes convenient to use an alternative representation of the velocity field. This is
done by means of the stream function which is defined as the function of u; and u, that
satisfies the continuity equation for a two-dimensional system, i.e.,

Ou,  Ouy
— = 614
Sz + Oy 0 ( )

As can be seen by substitution into the above equation, the higher-order function, %,
that will satisfy the continuity equation is expressed by the following equations:

Uz = ———, Uy = +—. (6.1.5)
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Figure 6.2. Pholograph of tracer particles (left) and computed streamlines (right) in a bottom-
injected flow model [1].

If we now consider the case of irrotational, two-dimensional flow (no z terms) and
express 4. and u, in (6.1.3) in terms of the stream function, we obtain:

buy _Bu._ 0 (00 _ 0 ( %\ _,
8z B8y Oz \ox dy\ o8y
8%y 32‘1,b_

w-{--é? =qQ. (6.1.6)

The above equation satisfies the continuity equation and also the criterion for irro-
tationat, two-dimensional flow. It has the form of the Laplace equation, which will be
discussed further in §6.1.3.

The stream function has an important physical significance: In a two-dimensional flow
field, a streamline is defined as a line connecting locations where the stream function, 1),
is constant. At steady-state conditions, the streamlines are identical to the path lines (or
“streak lines™) followed by particles of the fluid as they move through the flow system.

For example, Fig. 6.2 [1] is a time-lapse photograph of tracer particles following the
recirculating flow of liquid in a water tank due to injection of gas at the bottom of the tank
(left side of illustration); the computed streamlines for the same system are shown on the
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Figure 6.3. Compnted velocilies corresponding to the streamlines of Fig. 6.2 [1].

right side of Fig. 6.2. Figure 6.3 [1] shows the calculated velocities corresponding to the
streamnlines of Fig. 6.2. Inspection of Figs. 6.2 and 6.3 shows that the regions where the
streamlines are closer together correspond to the higher velocities of the fluid. particles.
Figure 6.4 is a time-lapse photograph of the fluid streamlines observed [2] in a water
model of a copper converter; in the model an air jet was injected through a side orifice,

e
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Figure 6.4. Streamlines in a water model of a gas-injected copper converter [2].

representing a tuyere, into the water bath representing copper. Polystyrene particles were
used as the tracer element.

6.1.3. The Concept of Velocity Potential

For ideal flow behavior, the Navier-Stokes equations can be written for the z-component
of velocity as follows:

O, Ol Ju, duzy 0P
p( Bt + Uy 39(+'u.!,r By + 1, 3z) = =% + pFy, (6.1.7)

and in vector notation for all three components of velocity:

Du
—_—=- . 6.1.8
pp; = ~VP+pF (6.1.8)
The above equation is referred to as the Euler equation and must be solved in con-
junction with equation of continuity (5.1.11).
We now define a new function, to be called the velocity potential, ¢(z,y, z), which is
related to the velocity components by means of the following equations:

o¢ _ 9¢ 9¢

Ty = U 3y =uy, 5o =Us (6.1.9)

Introduction of the velocity potential function in the continuity equation for incom-
pressible fluids at steady state (5.1.1%) yields

¢ ¢ 0%
= o T (6.1.10)

or in vector notation
Vi¢ = 0. (6.1.11)

5.1.)%
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Equation (6.1.10), like (6.1.6) for the stream function, is in the form of the renown
Laplace equation which also describes the flow of electricity due to an electric voltage
gradient, the flow of heat by conduction under a temperature gradient, and the flow of mass
by diffusion under a concentration gradient, It is therefore possible to use solutions of the
Laplace equation developed for other phenomena (e.g., equations or computer programs) to
determine the velocity distribution in an ideal, incompressible flow system. Because of this
similarity, one can also use electric analogue models of flow, such as graphite conductive
paper or a shallow bath of electrolyte to simulate a flow system and measure “velocities,”
by measuring the voltage distribution in the electric analogue.

If we now consider the velocity potential function for a two-dimensional, incompressible
flow system, we can develop a relationship between ¢ and the stream function 7/ in a flow
system. It is evident that for a line of constant ¢,

_o_2, 9
dp=0=7 du-+ 5 dy, (6.1.12)

and by substituting for the potential function differentials from (6.1.9):
0 = u.dz + u,dy. (6.1.13)
Finally, by algebraic manipulation of the above equation and replacing u; and u, by the

corresponding definitions of the streamn function (equation (6.1.5}), we obtain the following
relationship:

(&) ot 6.110)

dz/, uy  (O9[0z)  (y]/dT)ycons

The above equation expresses the fact that the ¢ and 4 lines at any particular location
must be perpendicular to each other. Therefore, one can deduce the location of the stream-
lines (constant %)) on the basis of the isopotential lines (constant ¢} and vice versa. Figure
6.5 [3] is an example of the orthogonal flownet of streamlmcs and velocity potenual lines.
for the flow of an ideal fluid through a slot.

Example 6.1.1. Flow l’rom a Source Point

We now consider the two—dlmensmnal (z,y) flow of water mtroduced at a central point
(source) in a large, shallow reservoir (Fig. 6.6). The solution of the velocity potential and
streamline equations (6.1.6) and (6.1.11) for this situation yields [5] the following expressions
for the velocity potential and for the stream function in terms of the flow of water in the
reservoir at the coordinates  and y from the entry point:

,UJ
¢= E_m(z‘* + %)Y, (6.1.15)
- and _ ,
v -
¥ = —tan” (-z—) : (6.1.16)

where v’ is the volumetric flow rate of water into the reservoir, in m%/s of flow per m of
depth of the reservoir. A plot of the above two equations is shown in Fig. 6.6 [5]. The
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Figure 6.5, Streamliines and velocity potential lines through a slot [3].

Figure 6.6. Streamlines and iso-potential lines for flow from a source in a reservoir.

lines radiating outward from the source point are the streamlines and the circles

present L
the isopotential lines. : - 5.1 ,;to &.\, 14-

To obtain the z and y-components of velocity, we can now use Equations (18] and (&)
and the definitions of streamline and flow potential presented earlier. By differentiation, we

obtain 9 8y , )
v &
w=5 =% =5 (i) (6147
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Figure 6.7. Streamlines around a sphere [3).

and

_ 0 _ oy y
Yy = dy Bz 2« (m ' (6.1.18)

The absolute value of the velocity at any location %,y from the point of entry is given
by the vector sum of the above two components:

2

6.1.
ir (6.1.19)

[ul = (u2 + 2)

where 7 = (22 + y%)1/2 is the radial distance from the source.

Example 6.1.2. Flow Around a Sphere

The solutions of the stream and velocity potential functions around a sphere (Fig. 6.7 [3]),
yield the following relationships for the radial and tangential velocity components:

3
= o
Uy = up COS P (1 — 1-3) ) (6.1.20)
L ing 5
Ug-= E’ub sinf |2+ 'r‘_3 , (6-:_[-21)

where 7 is the radius of the sphere, 7 is the radial distance into a fluid which is flowing in
the horizontal direction (Fig. 6.7) at a bulk velocity of u, and # is the angle from the forward
point of the sphere into the flowing stream. The velocity equations show that the tangential
velocity (ug) ranges from O at the forward (stagnation) point to a maximum of 1.5u; at
§ = 90°. Experimental measurements at high velocities past a sphere are in agreement with
the above equations except towards the rear of the sphere where turbulent eddies are formed
(Chapter 7). }

As another illustration, Fig. 6.8 [3] shows the streamlines for the.idealized flow of
a fluid stream, traveling downward at an initially uniform bulk velocity of u.p, which is
directed against a flat surface at plane z, y. In this case, the ideal flow velocity components
on the plane z,y are expressed as follows [3]:

oy = u,‘b%, (6.1.22)

tw

Uy = Uz p
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Figure 6.8. Streamlines for flow against a flat surface [3].
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Figure 6.9. Boundary layer formation along a flat plate.

where L is a reference length.

6.2. THE CONCEPY OF THE BOUNDARY LAYER

In our discussion of velocity potential, we considered fluid systems where the viscous terms
in the Navier-Stokes equations were negligible in comparison to the kinetic terms. However,
in the flow region close to a surface, viscosity effects have a pronounced effect on the fluid
velocity. It can be shown experimentally that as a fluid approaches a stationary flat plate
with a “free stream” or “bulk” velocity u;, the layers of fluid close to the plate are gradually
retarded and the fluid layer in contact with the stationary plate is also at rest (Fig. 6.9). The
flow region which is affected by the presence of the plate is called the boundary layer [6].
Its thickness is a function of the fluid properties and velocity and of the distance = and y
from the leading edge of the plate.

The presence of the boundary layer is of importance not only in fluid flow problems
but also in heat and mass transfer. As we shall show in this section, the thickness of the
boundary layer in laminar flow can be calculated from the differential equations of continuity
and motion. However, as will be discussed in Chapters 12 and 17, in many engineering
problems the boundary layer thickness can be “rolled into” semi-empirical factors which are
called heat transfer and mass transfer coefficients.
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6.2.1. Velocity Profiles in the Boundary Layer

We now consider the flow of an incompressible fluid over a horizontal thin plate (Fig. 6.9).
Flow 1s in the z-direction and at bulk velocity (i.e., main stream velocity) uy; however, due
to viscosity, in the vicinity of the plate there is transport of momentum in the y-direction
and this results in a u, component of velocity. There are no velocity components in the
z-direction and the system can be considered as two-dimensional. From Table 5.1, the
corresponding equations of continuity and motion at steady state are;

Oug | Ouy _
oz + By =0, (6.2.1)
Ouz du 18P p (0%, O%u,
"U.a:"'a? +‘UTE = —5 ™ + ; ( 552 o2 ) ) (6.2.2)
Ou, du, 18P p (D%,  B%,
Uy z +‘UuyE = —; a—y + ; ( ) 8y2 . (623)

These equations can be simplified further on the basis of the following considerations:
a. The flow over the plate is obviously created by a pressure gradient in the
g-direction. However, the immediate pressure gradients in the vicinity of
the surface are negligible in comparison to the interchange between kinetic
and viscous forces.
b. The gradient of the z-component of velocity in the y-direction, du./dy, is
large; however, the y-component of velocity, u,, is very small in comparison
to u.. Therefore, the momentum components associated with changes in uy
(i.e., (6.2.3)) can be assumed to be negligible and the equatior of motion
can be represented only by (6.2.2) for the z-component [7].
c. The transport of momentumn in the z-direction is principally by convec-
tion, i.e., by the flow of the fluid in the z-direction; therefore the diffusive
term (u/p)0%u, /8z? in (6.2.2) is much smaller than the convective term
uz0u; /Ox and can be neglected.
On the basis of the above considerations, the equations of motion simplify to the

following two equations:
3;: +-%%f==o, | (6.2.4)
Sz ta Su, _B 8%u,
Oz Yoy p oy
By integrating (6.2.4) for u,, for the boundary condition specified by Newton’s law of
viscosity, 1.e., 4y = 0 at y = 0, and substituting in (6.2.5) we obtain the following equation:

Ug

(6.2.5)

Y= az bz
0

£ : (6.2.6)

Su, r Su. d Bu,  p 8%u.
dy p O0y?

The boundary conditions for the above equation are:

ugz = 0, uy = 0 at y = 0 (plate surface),
Uz = Up, Uy = 0 at y — oo (i.e., far from the plate surface),
Uz = up at £ = 0 for all y.
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To solve (6.2.6), we start by assuming that the fluid velocity is affected by the presence
of the surface only within a certain boundary layer thickness, 6; beyond this layer, the fluid
velocity is up. Furthermore, we assume that the dimensionless velocity profiles, %, /uy, have
a similar shape which is a function, f, of the ratio y/6.. which is called transform variable
7

Us _ (Y _
=1 (L)-ro (6:2.7)
where y is the distance above the plate and 6. is the thickness of the boundary layer at

distance z from the leading edge of the plate. On the basis of these two assumptions, the
derivatives in (6.2.6) can be expressed as follows [7]:

Ous ; 7\ db; .

= =y ( 63)—@ , (6.2.8)
Ous _ (L
e = ( 62), (6.2.9)
O%u, a1

where f' and f* signify differentiation of the function f with respect to 7. By substituting
from (6.2.8)—(6.2.10) in (6.2.6) and integrating with respect to n, we obtain (7]

db.,, I v
B — —_— _ — .
(B~ )8, 32 =—2-C= -, (6.2.11)

1
A= Ff dn) , (6.2.12)
/
1 7 1
B=-0/.f, b/_f ndn | dn=-A+ (-0/ f’ndn) , (6.2.13)
1
C — fH dﬂ) — fl
/

Integrating (6.2.11) for the boundary condition of b, =0 at £ = 0 yields [7]:

5, = \/2 (ﬁ) ‘;—‘: (6.2.15)

Equation (6.2.15) shows that the thickness of the boundary layer is proportional to the square
root of the distance from the leading edge, z, and inversely proportional to the square root
of the free stream velocity, us.

An exact solution of {6.2.15) can be obtained by a numerical technique and the use
“of a computer, as will be discussed in Chapter 11 for the solution of the unsteady state

where

1
. (6.2.14)
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conduction equation. To proceed further with the analytical solution, it is necessary at this
point to select a reasonable velocity profile to represent the function f(n)} of (6.2.7). For
example, as a first approximation one can assume that u, increases linearly from Qaty =0
to up at y = 6. However, the following simple algebraic equation was found {7] to represent
better the shape of velocity profile observed in experiments:

_uz _3 14
) = =37 3" (6.2.16)
On the basis of (6.2.16), parameters A, B, and C have been estimated [7] from (6.2.12)-
2.14) to b
(6.2.14) to be A_i B_ﬁ c___:i
=3 B=5p €73 (6.2.17)
By inserting these numbers in (6.2.15), the boundary layer thickness is expressed as follows:
280 vz fvz
— — =4.64,[—. 2.
13 uyp Up (6 18)

Substituting now for n = y/6, from (6.2.18) into (6.2.16), we obtain the velocity
distribution in the boundary layer as a function of = and y:

3
1
vz _3f_ ¥V _1{_ ¥ ) fro<y<s, (6.2.19)
2 \d64,/= ] 21464,/

The validity of this equation has been tested by calculating the drag force (shear stress
due to viscous force times surface area affected, Chapter B) exerted by a fluid on the upper
and bottom surface of a plate of width W and over distance L from the leading edge of the

plate:
W L
F, = 2]/ (p ) drdz = 1.292+/ppLW2u}. (6.2.20)
00 y=0

It should be noted that an exact solution of (6.2.6), obtained by Blasius [10] long before
the advent of computers, has the same form as (6.2.20) with the exception that the constant
is 1.328 instead of 1.292; this confirms the validity of the assumptions made in deriving the
above analytical solution.

The solution of (6.2.6) is shown in graphical form, in terms of the dimensionless
functions of u.., uy, and , in Fig. 6.10; it can be seen that . approaches u; asymptotically.
The boundary layer thickness, §., is assumed to be the distance from the wall where the
fluid velocity is within 1% of the bulk velocity of the fluid; in other words, the perpendicular
distance from the plate surface at which

Oz
Ay

—= =0.99. (6.2.21) "

On the basis of this definition, we can obtain from the data of Fig. 6.10 the following
expression for the thickness of the boundary layer:

VI 1/2
6z 7 5.0 (-—) : (6.2.22)
up
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Figure 6.10. Velocity profile in the boundary layer along a flat plate and illustration of dis-
placement thickness.

where §. is the thickness of the boundary layer at distance = from the leading edge of
the plate. A more useful, and physically more significant, measure of the boundary layer
thickness is in terms of the displacement thickness which is defined mathematically as

follows: o
5 = f ('“’b _'“'“) dy. (6.2.23)
Uy
0

The form of (6.2.23) shows that the displacement thickness is an averaged expression
of the boundary layer thickness. In physical terms, the product of the displacement thickness
and the bulk velocity of the fluid over the plate (i.e., §*us) is equal to the volumetric flow
rate, per unit width of the plate, at which the fluid stream is retarded because of the presence
of the surface. Looking at the same situation in a different way, if the plate were moving
in a stationary fluid, the product of the plate velocity and the boundary layer displacement
thickness would represent the volume of fluid camied over with the plate, per unit width of
plate.

The actual value of the integral representing the displacement thickness (see equation
(6.2.23)) can be obtained graphically from Fig. 6.10 and is expressed by the following
equation:

VT 1/2
6 ~ 1,73 (—) . (6.2.24)

It must be noted that the above equations apply to laminar flow which, for flow over
a flat plate is in the region of Reynolds numbers (Chapter 7) of

Re = % < 108, (6.2.25)

The above definition of the displacement Lhickness of the boundary layer can be useful
in situations where it is necessary to estimate the volume of fluid entrained by a solid or
liquid body moving through a fluid. Examples are the entrainment of oxygen by liquid
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Figure 6.11. Displacement thickness for thin cylindrical bodies.

streams during tapping and casting and the coating of plates and wires by immersion into a
liquid bath.

It has been determined [4] that the concept of the displacement thickness, which was
originally developed for flat plates, can also be applied to cylindrical bodies with fluid flow
parallel to their axis provided that the radius of the cylinder, r., is much larger than the
value of §*. In such cases, the volumetric flow rate of entrained fluid is expressed by the

product of the plate velocity relatively to the fluid and the cross-sectional area of an annulus
of width §*, i.e.,

& = uym [(6" 1) — rg] = wA, (6.2.26)

where A is the cross-sectional area of the fluid annulus. In cases where the displacement
thickness is large in relation to the radius of the cylindrical body, Glauert and Lighthill
[4] recommended the use of Fig. 6.11 which gives the value of the cross-sectional area of

the fluid annulus {expressed as a fraction of the cross-sectional area of the cylinder) as a
function of the dimensionless group

T VE
£ or

pupT2 Uupr?

Equations (6.2.24) and (6.2.26) can be used to calculate the volume of gas carried along
by a cylindrical body moving through a stationary gas. Such a case is illustrated in Fig.
6.12 which shows a stream of molten metal flowing through a nozzle at the bottom of a
ladle, -through the atmosphere and into a mold, during casting. In this kind of problem, it
is convenient to calculate the mass of gas entrained per mass of falling metal stream (e.g.,
parts per million of gas entrainment). Therefore, we need to compute

mass of gas entrained _ B.L. cross-section x gas density
mass of cylinder ~ cylinder cross-section x its density
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Figure ¢.12. Entrainment of gas by a liquid metal stream.

If the above ratio is denoted by R.,, by combining (6.2.24) and (6.2.26) we obtain

py | 3vx v\
R, = 2 r346r. [ — , (6.2.27)

P2 | up up

where p, is the density of the entrained gas, calculated at the “film” temperature (assumed to
be equal to the arithmetic mean of the temperatures of the cylinder and the bulk temperature
of the enveloping gas) and p,. is the density of the cylinder.

Equation (6.2.26) can be used in cases where the liquid stream is relatively short and
behaves like a cylinder, rather than breaks up. For thin cylindrical bodies, instead of using
(6.2.26), Fig. 6.11, which was experimentally derived, should be used to determine the mass
ratio of entrained gas from the following equation:

R,=2 ( A ) . (6.2.28)

Pe \TT?

Example 6.2.1

In a continuous casting operation, a stream of molten steel issues from a 2.0 cm diameter
orifice at the bottom of a tundish and falls through air into 2 mold below (Fig. 6.12). The
surface of the metal in the mold is 20 cm below the orifice, the metal temperature is 1560°C
and the “film” temperature 790°C (p, = 3.31 x 107* g em™3; p, = 4.34 x 107* g 571
cm~'). If the casting rate is 250 kg/min, calculate the amount of oxygen entrained in the
metal stream during its fall, using the data of Fig. 6.11.
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First, from the casting rate, the orifice diameter and the assumed metal density of 7.9
g cm~—2, the stream velocity is calculated to be u, = 168 cm/s. We then calculate the value
of the group

“9 _ 0.156,
upr?
and from Fig. 6.11 we find that the corresponding value of the film annulus to be
A
= 1.55.
T2

Finally, from (6.2.28) we calculate that the ratio of mass of air entrained per unit mass
of steel as

R, =649 x1075,

If it is assumed that all the oxygen content in the entrained air (23% O, by weight) is
absorbed in the liquid metal, the calculated pickup of oxygen is

0.23 x 64.9 x 107 = 14.9 ppm.

Example 6.2.2

It was reported in [8] that the oxygen content of a liquid steel stream flowing through a
3.86 cm orifice at the bottom of a ladle to a casting machine below the ladle decreased by
9 ppm when a protective atmosphere of argon was provided around the falling stream. The
rate of flow was reported to be 1.21 tons/min. and the height of fall between orifice and
surface of melt in tundish of casting machine was 40.5 cm. Compare the reported data with
the calculated value for oxygen entrainment when the steel stream falls through air instead
of argon.

As in the previous example, we calculate the stream velocity to be 218 cm/s and the
ratio

5 = = 0.0654
'uyr

to be much less than 1. Therefore, in this case we are justified in using (6.2.27) to calculate
the pickup of oxygen when the stream falls through air (23% O by weight):

R 5ir = 45.3 ppm, and R, ox = 10.4 ppm.

The calculated value is close to the reported reduction in ppm of oxygen pickup, when the
argon shroud was used around the stream of molten metal.
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SEVEN

Turbulent Flow

Throughout our earlier discussion of Newton’s law of viscosity and the differential equations
of motion, it was assumed that the flow was laminar. Reynolds [1] was the first known
experimenter to demonstrate that under certain conditions of flow velocity, pipe diameter
and fluid properties, a tracer dye introduced in the center of the flow in the pipe does not mix
with adjacent layers and travels in a line parallel to the axis of the pipe (Fig. 7.1). However,
when the flow rate through the pipe is gradually increased, at some critical velocity of flow
the dye is quickly dispersed throughout the pipe, as illustrated in Fig. 7.1b.

7.1. CHARACTERISTICS OF LAMINAR AND TURBULENT FLOW

The first regime of flow (Fig. 7.1.a) where the layers of fluid slide over each other without
mixing and where the velocity at any location in the pipe remains constant, is called laminar
flow. The second regime of flow, which entails mixing between adjacent layers by means
of eddies or “curls” (Fig. 7.2) is called turbulent. '

To visualize eddy formation, consider a smooth pipe through which there is laminar
flow of a fluid. Let us assume that this flow comes to a zone of the pipe where the wall is
slightly rough. This roughness may cause particles of fluid to be torn away from the outer
layers of the laminar flow and forced into the core of the flow where their momentum may
cause other particles to move out of laminar flow and so on.

The above is only an illustration because, at sufficiently high flow velocities, there
will be eddy formation and turbulence even in flow through perfectly smooth conduits:
Eddies start to form near the wall and the turbulent boundary layer soon grows to occupy
the entire cross-section of flow. Depending on the flow system, eddies can be as large as
the characteristic length of the system but generally larger eddies break down to smaller
ones. The size of eddies is usually represented by the Prandtl mixing Iength, which is
considered to be the distance that an eddy can travel before colliding with another. Figure
7.3 [2] shows the variation in mixing length, ! (expressed as the dimensionless ratio I/rg,
where 7g is the radius of the pipe), with vertical distance from the surface of the pipe (also
expressed in dimensionless form as y/rg).

The transition from laminar to turbulent flow depends on the ratio of inertial to viscous
forces in a flow system and can be quantified by means of the dimensionless Reynolds
number, Re, which is deﬁned as follows:

, (7.1.1)
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Figure 7.1. Experiment of Reynolds on dispersicn of dye tracer in water in (@) laminar and
(b) turbulent flow.

Figure 7.2, Eddy formation in turbulent flow through a channel,

where L is the characteristic length of the flow system, m; % is the average fluid velocity, m
s71; p is the fluid density, kg m™3; p is the fluid viscosity, kg s~! m™1; v is the momentum
diffusivity, m? s~1.

As shown by (7.1.1), the Reynolds number is the ratio of the inertial force in the system
(represented by the product of the characteristic length, the flow velocity, and the density
of the fluid) to the viscous force (represented by the viscosity of the fluid).

For flow through pipes and conduits, the characteristic length L is taken to be the
diameter or equivalent diameter of the conduit. The transition from laminar to turbulent
flow in pipes starts at about Re > 2100 and is considered to become fully turbulent at
Re > 4000 (Chapter 8). For flow around a spherical particle, the characteristic length is the
particle diameter and transition occurs at Re > 200. The transition Reynolds number for
other systems will be discussed in later chapters.

In addition to the visually observed differences between laminar and turbulent flow,
there are other physical manifestations of turbulence. Thus, as discussed in Chapter 4, in
laminar flow the pressure drop over a certain length of conduit is linearly proportional to the
average velocity; on the other hand, it has been shown experimentally that at flow velocities
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Figure 7.3. Eddy mixing length as a function of distance from wall of pipe [2].

above the critical Reynolds number, there is an abrupt increase in the slope of the plot of

pressure drop against velocity and the pressure drop becomes proportional to 2% — 420,
It was also shown in Chapter 4 that the velocity profile for laminar flow in a pipe is

parabolic with distance from the center of flow and the following relationships apply:

LA (1)2, (7.1.2)

Umax To

71

st (7.1.3)

In contrast, in turbulent flow, because of the transfer of momentum by the eddies, the
velocity profile across the pipe is flatter. The corresponding relationships can be expressed
approximately as follows: -

; (7.1.4)

(7.1.5)

The difference between laminar and turbulent velocity profiles is illustrated in Fig. 7.4.

7.2. FLUCTUATING COMPONENTS OF VELOCITY

If a hot-wire anemometer (Fig. 7.5), or other sensitive velocity-measuring instrument, is
used to measure the instantaneous velocity at a fixed point in a turbulent flow field, it will
be found that although the average velocity at that location is constant, there is a fluctuation
of instantaneous velocity with time (Fig. 7.6).
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Figure 7.6, Time-averaged and fluctuating velocity components in turbulent flow.

The actual velocity at any particular time, ., may be expressed as the sum of the
time-averaged velocity and the fluctuating component ur, i.e.,

U = Bz + U (7.2.1)
The same considerations apply to the velocity components in the other two directions,

i.e., uy and u.. Similarly, the pressure at any point and at any particular instant can be
expressed as the sum of a time-averaged pressure plus a fluctuating component P':

P=P+P. (7.2.2)

The time-averaged velocity in the direction = over time interval 2, is expressed math-

ematically as follows:
i
1
=_f (7.2.3)

By definition, the time-averaged values of the ﬂuctuating components

t"l-

PY Y R -7}
ul, ul, uh, P

!
1 i1

are equal to zero. However, the time-averaged value of the sguare of a fluctuating component

is not equal to zero:
te .
—=_ {1 12
ur =\ (ug)” dt # 0. (7.2.4)
<
0

Therefore, the degree of turbulence in a flow system may be expressed either in terms
of the root mean square of the fluctuating velocity components, i.e.,

@, @) wn’? (7.2.5)

or in terms of the ratios of the above quantities to the corresponding time- averaged velocity
components:

—e1f2 T2 172

(u2) (uf) (u2)

: 7.2.6
= 5, (7.2.6)
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The ratios of (7.2.6) are called the intensity of turbulence. Their values range from
0.02 to 0.1 for flow through a pipe but can be much higher in highly mixed systems, such
as, for example, a gas-injected liquid bath.

The equations of continuity and motion for laminar flow, can also be adapted to tur-
bulent flow systems by taking into consideration both the time-averaged and the fluctuating
components of velocity. However, the solution of the differential equations of motion for
turbulent systems presents much greater complexity than for laminar systems.

The principal difference is that in laminar flow there is a unique relationship between
the shear stress in the fluid and the velocity gradient, in terms of the molecular viscosity of
the fluid. There is no such relationship in turbulent flow: the value of the proportionality
constant between shear stress and the averaged velocity gradient in a turbulent system
depends both on the fluid properties and the actnal flow conditions in the system.

By substituting from (7.2.1) into the equations of continuity and motion presented
earlier (see (5.1.6) and (5.2.18)), it can be shown that the form of the continuity equation
remains the same. However, because of the presence of the fluctuating components, six new
terms appear in the equation of motion:

PUZUL, PUZUL, PUZUL,
LT LT LFTL
puyuya m‘yu’z! Puzuz

(7.2.7)
The above terms are usually called Reynolds stresses.

7.3. THE CONCEPT OF EDDY VISCOSITY

Boussinesq [3] related the magnitude of the Reynolds stresses (see (7.2.7)) to the velocity
gradient in a turbulent fluid by means of the following equation:

Tyz = PULUL = —pe ——, (7.3.1)

where . is defined as the eddy viscosity, or apparent turbulent viscosity, of the fluid
system and i is dependent on location. For instance, close to a wall ji, may be insignificant
in comparlson to_the molecular viscosity of the fluid, but in the bulk of a highly mlxed ﬂund
“tﬁc eddy viscosity can he orders of magiitude greater.

In accordance with the Boussinesq concépt; the total shear stress in a fluid consists of
the sum of the laminar and turbulent components:

dit,
dy

Tye +Tye = — (1 + pe) (7.3.2)

The above equation expresses elegantly the contribution of turbulence to the shear stress
in a system but it is of little practical use unless one can assign specific values to the eddy
viscosity at each location. In order to do so, Prandtl [4] assumed that eddies move in the
fluid in the same way as molecules in a gas. Accordingly, a mixing length was defined
which is equivalent to the mean free path in the molecular representation of gas viscosity.
This assumption led to the following equation for eddy viscosity:

du )
— ]2 T
e = plyy oy (7.3.3)




TURBULENT FLOW 69

Prandt] suggested that the size of the mixing length, I,,,, was proportional to the distance
from the wall, y. For flow in a pipe of radius rg, the mixing length is related as follows to
the pipe radius (see Fig. 7.3):

In = 0.4y for y > 0.27. (7.3.4)

Subsequent studies have shown that the mixing length hypothesis can describe well the
effects of turbulence near the wall of a conduit. However, the Prandt! model cannot describe
adequately turbulent flow in complex two-dimensional or three-dimensional systems, such
as in chemical and metallurgical reactors.

7.4. THE k& — ¢ MODEL OF TURBULENCE

It is now generally accepted that a very useful way of cha:acierizing turbulent flows is by
means of the kinetic energy of turbulence, k, per unit mass of fluid. This is defined as the
following function of the fluctuating components of velocity:

1 o , ~In . " 1n .
k=g (uf w2 +'u.z2) . (7.4.1)
For isotropic turbulence, which represents most of the turbulent energy in bulk flows, we
have

—— —5

u2 =u? = uZ (7.4.2)
Therefore, the kinetic energy of turbulence (see (7.4.1)) can be expressed as follows:

k= %u;?, (7.4.3)
and its dimensions are L2 t~2. One of the most prominent mathernatical models for de-
scribing turbulence in bulk flows is the & — £ model developed by Spalding and co-workers
[5]. This model assumes that the rate of change of turbulent energy, k, in a fluid element
is a function of the turbulence energy and velocity gradients in the fluid minus a function &
which is defined as the rate of dissipation of turbulent energy. If we use the index notation
of 7 and j to represent the dyadic products of the three components of velocity, «., uy, and
u., the corresponding energy balance is expressed as follows:

ok ok _ 8 [peiok du;  Bu;\ Ous
ﬁ T 3(5,' - 3&:; (\;:6:5.) + ye(amj * 3&:;) 32:5 & (7-4.4)

where oy is a constant and v is the effective turbulent momentum diffusivity (or turbulent
kinematic viscosity) and is defined as follows:

m=v+y = E—-—;ﬁ = % (7.4.5)
appd Ty +
The k — ¢ model assumes that the effectrve turbulent kinematic viscosity is related to
the kinetic energy of turbulence by the following equation:

2
v =225, (7.4.6)
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where Cp = 0.09 [6].
The k—e model also assumes that the rate of change of the function ¢ in a fluid element
is represented by the following equation:

de de 8 v, O a Ou; € g?
5 Yisa; B (z_ a) 01”= [az, (a)] -Gy (74D

where g., {1, and 02 are constants.

It can be seen that the left sides of (7.4.4) and (7.4.7) comrespond to the substantial
time derivatives of k and ¢, respectively.-As we discussed in Chapter 5 (see (5.1.8)), these
derivatives describe the rate of change of k and ¢ as observed by someone moving with the
fluid element. In the case of non-isothermal flow, the £ —&e model includes one more equation
and additional terms to account for the effect of buoyancy forces in the fluid (Chapter 12).

The value of the “constants” oy, o, Ch, and Cs in (7.4.4)-(7.4.7) to a certain extent
depends on the geometry of the flow system (curvature; near-wall effects, etc. However,
for most cases, the following values were recommended by Jones and Launder [7] and are
generally used:

o, =10, 0, =13, C1 =144, €53 =192, Cp =0.09.
. Y
Equations (7.4.4) and (7.4.7) are coupled and must be solved simultaneously by means
of numerical techniques. The FIDAP fiuid dynamics program [9] is one of the commercially
available packages which faeilitate greatly the solution of the differential equations for
turbulent flow. This program uses the finite element method of numerical analysis. Examples
of this technique in heat transfer problems will be presented in later chapterts.

Example 7.4.1

Sahai and Guthrie [8] developed the following equation for the effex:tlvc turbulent viscosity
of a metal bath contained in a ladle stirred by means of gas injection through a bottom
orifice (Fig. 7.7):

Naq1/3
u=55x10"%p,. L [(—1%] , (7.4.8)

where p,,, is the density of liguid metal, 7500 kg/m?; L is the depth of metal above point
of injection, m; ¢ is the gas fraction in the “plume” rising above the point of injection; © is
the gas injection rate, m3/s; d; is the ladle diameter, m.

Calculate the effective turbulent viscosity of the bath in a 250-ton steel refining ladle
(1600°C) under the following operating conditions:

.

Ladle diameter = 3.6-m. | .

Depth of liquid bath = 24 m. 2.4 v
Injection gas flow rate = 1.07 Nm®/min.

. Estimated gas volume fraction in plume = 0.2.
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Figure 7.7. Plume formation and recirculating Aow in a gas-injécted metal bath (injection
orifice at centerline of vesssel). .

First we calculate the volumetric rate of gas m_lectlon at 1600°C and at an average
pressure equal-to half the metal depth:

1.07 (1600 + 273) 101300 ; m3
= X X X} = 0.065 —

60 273 (101300 + 2t x 7500 x 9.807)
Then, by substituting the given numerical values in (7.4.8), we find that the effective turbu-
lent viscosity is o 9% %

807 x 0.061) /3
1 = 5.5 % 1073 x 7500 x 2.4 X\Cﬂ;‘%o_) =56kgs ‘m L. ({51'6)
It can be seen that this value is much larger than the-molecular viscosity of moltcn '

steel (u=6cP=6x 10" kgs~! m™%). C
Example 7.4.2 .

Sahai and Guthrie proposed [8,2] the following correlations for calculating the velocity of
the rising plume (u,) and the average recirculation velocity (u,v.) in a liquid steel bath in
which gas is injected through an orifice at the bottom of the bath (Fig. 7.7):

4.4.150'251:,0'33

T R (7.4.9)

Up =

0.18u
Uree = Wzl (74‘10)
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where L is the depth of the orifice below the bath surface, m; @ is the gas flow rate through
the orifice, m3/s, at actual conditions; R is the radius of the ladle containing the liquid, m.

Gas is injected through the bottomn of a ladle containing liquid metal (Fig. 7.7) at the
flow rate of 0.4 Nm? s~! (1.65 m® s~ at the actual conditions of 1200°C and 1.3 atm in
the molten bath). The injection orifice is located 1 m below the surface of the bath. If it is
assumed that the equivalent radius of the molten bath, i.e., the radius of the zone affected
by the nising “plume” of gas (Fig. 7.7) is 1 m, calculate: a) the “plume” velocity; b) the
average residence time of the injected gas in the melt; and c¢) the recirculating velocity of
the melt in the zone around the plume.

From (7.4.9), the “plume” velocity is calculated to be 5.2 m s~!. Accordingly, the
residence time of the gas in the melt is approximately 1/5.2 = (.19 seconds. The recirculating
velocity is calculated from (7.4.10) to be 0.94 m s~!.
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EIGHT

Overall Material and Energy Balance
in Fluid Flow

In Chapters 4 through 7, we developed the equations of continuity and motion and discussed
some of their applications. In their general form, these equations are highly complex;
however, we showed that by making certain simplifying assumptlons, they can be solved to
provide the velocny profiles. rcsu]tlng from the forces actmg on the ﬂow system.

The principal advantage of the differential equations of flow is that they can provide
information on the fine structure of flow. However, in many engineering problems we are
not concerned with the “microstructure” of flow but with the overall relationship between
the forces acting on a flow system, such as pressure and gravity, and the flow rate of fluids
through it.

Examples of problems on the “macrostructure” of flow are: the size of a pump needed
to move a fluid between two points; the time required to empty a vessel containing liquid
through an orifice; the design of an orifice meter to measure flow velocities through a
conduit, and so forth.

Such problems are quite common in the design and operation of processes. They can
be solved by establishing the overall energy and material balances between an “inlet” and an
“outlet” point of the system; and then solving the resulting equations for the inlet and outlet
boundary conditions. The difference between the “microstructure” and the “macrostructure”
approaches to fluid flow problems is illustrated in Fig. 8.1.

In general, the overall balances result in algebraic equations for steady-state systems
and in first order differential equations for unsteady state, or time-dependent systems. Such
equations are much easier to solve than the differential equations of flow but, of course,
provide less information on the flow phenomena within the system.

In dealing with the fine structure of flow, we had to introduce the phenomenological
factor of viscosity which relates the shear stress to the velocity gradient (Newton’s law
of viscosity). In the same way, in developing the overall energy equations we need to
establish various relationships between the parameters involved. In general, such correla-
tions are “semi-empirical,” i.e., they are based both on theoretical considerations and on
experimentally developed constants.

8.1. THE OVERALL MATERIAL BALANCE

To construct the overall material balance for flow in the vessel shown in Fig. 8.2, we will
consider the whole vessel as the control volume. Since material enters only through surface
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Figure 8.1. Illustration of (a) “microscale” and (&) “macroscale’ balances in a conduit,
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Figure 8.2. Overall momentum balance in a flow system.

A; and leaves through surface As, the conservation of mass in the control volume can be
- expressed algebraically as follows:

rate of material accumulation within the system

. (8.1.1)
= mass flow rate in — mass flow rate out.

Under steady state conditions, there is no accumulation or depletion of mass in the
control volume and the above equation simplifies to:

mass flow rate in = mass flow rate out (8.1.2)

pAT = pr A1ty = paAxls, (8.1.3)

where p represents the density and T the average velocity of the fluid at locations / and 2.
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8.2. THE OVERALL MECHANICAL ENERGY BALANCE

In the following discussion, we shall consider only the mechanical energy terms of the
energy balance, that is kinetic, pressure and potential (e.g., gravity) energy; a more general
statement of the conservation of energy, i.e., the first law of thermodynamics, must include
thermal effects such as the generation of heat due to the viscous force. The equations to be
developed in this chapter apply to systems which can be assumed to be isothermal. This
assumption is reasonable for most engineering systems, since the heat produced by friction
is relatively small and can not affect the temperature of the flow system appreciably. For
high friction systems, e.g., in certain problems of lubrication, provision must be made in the
system design to remove the heat produced (e.g., by air or water cooling) and maintain the
"system essentially isothermal.

The overall mechanical energy balance is established in a similar way as was done
in Chapter 5 for developing the equation of motion; however, in this case, the differential
volume element is replaced by the volume of the entire system, as illustrated in Fig. 8.2:

rate of accumulation of energy within the control volume
= net transport rate of kinetic energy

+ net transport rate of potential energy

(8.2.1)
+ net transport rate of pressure energy

+ rate of mechanical work done
+ rate of work done against friction

The word net is used in {8.2.1) to indicate input minus output to the control volume.
The words transport rate are used to indicate that kinetic, potential, and pressure energy are
associated with a particular mass flow rate; e.g., as the fluid moves from a high level to a
lower one its potential energy content decreases. The terms rate of work are used in the last
two terms of (8.2.1) to indicate that this work is also due to a particular mass flow rate.

At steady state conditions, there is no change in the kinetic and potential energy within
the control volume, Therefore, the left side of (8.2.1) becomcs zero. This equation is then
cxpresscd in algebraic form as follows:

rol =

[(p2A2%2) T3 — (p1 A1) )

: (8.2.2)
+ [(pgAzﬁz) gzo — (plAlﬁl) gzl] + f d(PAﬁ) + W+ Wi =0.
/ )

In (8.2.2), the pressure term is expressed as an integral of d(PA7%) to include the case
of compressible flow where density is a function of pressure. The rate of “mechanical work,”
W, refers to the rate at which the system performs mechanical work, e.g., work done by
the fluid in turning a turbine; it is preceded by a minus sign if it represents mechanical work
done on the system, e.g., by an internal pump. The term “work done against friction,” Wy,
represents the rate at which mechanical energy in the fluid is used up because of the viscous
forces in the fluid.
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For steady-state conditions, the mass flow rate through the control volume does not
change (see (8.1.3)). By dividing all terms of (8.2.2) by the mass flow rate of (8.1.3), we
obtain

2
1
5 (@ %) +9(z2 - 21) +]
1

d(PA%)
pAY

+ W, + W, =0, (8.2.3)

and for a conduit of constant cross-section, where A% = A1%; = Aq%g,

2
1 dP
3 (a3 —us) +g(ze —z) + / 3 + W, +W =0. (8.2.4)
/ _

The term W), represents the rate of mechanical work done on the system (e.g., turning an
impeller), or by the system on the fluid (e.g., a pump within the conduit); the term W[
represents the rate of work to overcome frictional forces; they are both expressed per unit
mass of fluid through the system in order to be consistent with the rest of the terms in this
equation. Thus, all the terms in (8.2.3) have the dimensions of energy (or work) per unit
mass, i.e., L2 t~2,

Equation (8.2.3) represents the conservation of mechanical energy for steady state sys-
tems and is sometimes referred to as the Bernoulli equation for engineering systems. This
equation is very unseful in providing a relationship between the initial and terminal values
of u, z, and P and the work terms W, and W},.

In the following section, we shall discuss some cases of flow where there is no work
done on the surroundings and where the frictional term may be assumed to be negligible.
Such problems can be solved using (8.2.3) without needing to resort to any semi-empirical
relationships.

8.3. MEASUREMENT OF VELOCITY

8.3.1. The Pitot and Venturi Meters

An important application of the Bernoulli equation is in measuring the velocity of fluids.
An instrument used for this purpose and also for measuring the speed of vehicles through
air (e.g., airplanes) is the Pitot tube shown in Fig. 8.3. It consists of two concentric tubes
which are sealed together at the front annulus and at the other end are connected to each side
of a manometer or other pressure measuring device; at the front end of the Pitot tube, the
inner tube measures the “impact” pressure of the flow stream while the outer tube, through
a downstream opening on the side, measures the “static’ pressure at the same location (Fig.
8.3).

At point I where the gas flow impacts on the tip of the Pitot tube, the gas velocity, T,,
becomes zero; at the downstream point 2, the gas flows past the tube at the average velocity
of the stream, %o. It is evident that the kinetic energy of the stream is converted to pressure
energy and therefore P, > FP,. If we assume that the compressibility effects are negligible
and there is no loss of energy between sections I and 2, (8.2.4) yields

(@ — ) = _f % __(P-h) (8.3.1)

Ll

P
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Figure 8.4. Streamlines (hrough venturi tube.

o

1 2
| ! -
! F
| \ y
e ) D
¢ érl‘eiflc:\?vn d, |VYena contracta

I

s oy

L]
]T‘\Pressure taps /T

Manometer

Figure 8.5. Orifice plate meter for measuring Aow velocity.

77



78 N. I. THEMELIS

Since @y = 0, the stream velocity Ta can be calculated from the measured pressure differ-

ential as follows: 05
_ [2(P1 —Pz)] '
Uy = _,o— }

Another instrument used to measure total flow through a tube is the venturi meter,
where the cross-sectional area for flow is first reduced and then expanded (Fig. 8.4). If
we measure the pressures at points I and 2, we find that P, > P,. The reason is that the
constriction in area between points I and 2 has resulted in a higher velocity at point 2; thus,
the kinetic energy of the fluid has increased at the expense of the pressure energy. By using
(8.3.1) and also the overall material balance of (8.1.3) for negligible change in density of
the fluid between point 7 (where the diameter of the pipe is dp) and at the “throat” of the
venturi {point 2, diameter = d,), we derive the following equation for the fluid velocity at
the “throat” of the venturi:

_ [ 2(Py — Py) ]“

Uy = | ——————m—r
27 (0 - 42/43)

Once the velocity is calculated, the volumetric flow rate can be determined from the
product upAs. '
~ It should be noted that venturi meters provide for gradual and relatively smooth con-
traction and expansion of the conduit, in order to minimize friction loss in the venturi.
However, in practice there is some energy loss and to account for it the venturi coefficient,
C,, is introduced in (8.3.3); typical values of this coefficient range from 0.98 to 1.0. Thus,
a more general form of (8.3.3) for the cylindrical venturi of Fig. 8.4 is as follows:

0.5
— 2(P — B)

(8.3.2)

(8.3.3)

where 7 is the velocity at the venturi throat, d, the throat diameter, and dp the diameter at
the entry to the venturi.

8.3.2. The Orifice Plate Meter

A very useful device for measuring flow in cylindrical conduits is the orifice meter shown
in Fig. 8.5. The fluid approaches the orifice with a velocity uy and at pressure P;. At the
orifice plate, the cross-sectiogal area of flow is restricted suddenly from A; to As and the
velocity is therefore increased to uo. Therefore, the principle of operation is the same as
for the venturi meter but, because of the sudden contraction and expansion of the flow area,
the frictional loss in this case is appreciable.

1t is therefore necessary to introduce a correction factor in the balance between kinetic
and pressure energy, as we did in the case of the venturi meter. However, this orifice
coefficient, C, is considerably smaller than 1 and depends on the design of the orifice plate,
the ratio of orifice diameter to pipe diameter, and the location of the pressure measuring
taps (Fig. 8.6). For a cylindrical conduit of diameter d,, and orifice plate diameter d, (Fig.
8.5), the orifice meter equation is similar to (8.3.4) for the venturi meter:

AP — P ]0-5 (8.3.5.)

w2 = Co [p(l —di/a1)
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Let us now develof,\ an expression equivalent to (8.3.5) for the case of a compressible
fluid in isothermal flow through an orifice; for isothermal flow, the ideal gas law yields:

PV = AV, = BV; =aRT, (8.3.6)

where V is the volume of n moles of gas, and R the universal gas constant (Table A2). By
combining (8.3.6) with the pressure integral of (8.3.1), we obtain:

2

_/7-”: j _fplvld_ _Plvlm(g) (8.3.7)

1 1

Therefore, on the basis of the same assumptions as we made in the derivation of (8.3.5),
we obtain the following equation for the velocity of compressible flow through an orifice of

diameter d,: o
2P Viln & |
T =C, | it | (8.3.8)
(1- )
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Eddies

®)

Figure 8.7. Streamlines for (@) sudden expansion and (b) sudden contraction of flow.

8.4. FRICTIONAL LOSS IN SUDDEN EXPANSION AND CONTRACTION

When a fluid flows through a sudden expansion in a pipe (Fig. 8.7a), the increase in cross-
sectional area results in a gradual decrease in the fluid velocity. Thus, fluid with a relatively
high velocity is suddenly injected into a fluid moving more slowly. This results in eddies
and energy loss between the planes ! and 2. The frictional loss due to this phenomenon can
be expressed by '

a2 '

Wie =k (2). (8.41)
where k. is the expansion loss coefficient. For turbulent flow, k. is related to the initial and
final diameters as follows [1]: _

d2 2
ke=(1-= 4.2
(:-%) (8.4:2)

where d; and dy are the diameters of the small and the larger pipes, respectively.

In contrast, Fig. 8.7b shows the flow through a pipe, the diameter of which is suddenly
reduced from d; to da. The reduction in effective area for flow continues for a short distance
beyond the actual constriction, forming a “vena contracta” similar to that observed in orifice
plates. After passing through the vena contracta, the flow area gradually expands to fill the
cross-sectional area of the pipe. As the fluid moves towards the vena contracta, its velocity
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increases and some of the pressure energy is converted to kinetic energy; this process does
not result in eddy formation. On the other hand, the expansion of the fluid after passing
through the vena contracta is similar to the case of sudden expansion and results in the
formation of energy-consuming eddies. The energy loss in this case can be expressed as
follows: )
72
Wi, . = ke (?2) , (8.4.3)
where, for turbulent flow, the contraction loss coefficient k. is expressed by the following
equation [1]:
&\* d2
k. =042 (1 - ?) for 0.4 < 7 < 0.76. (8.4.4)
1 1
As shown in the empirical plot of Fig. 8.8 [1], at the value of d3/d; = 0.76 the sudden

contraction curve merges with the sudden expansion curve. Therefore, (8.4.2) can be used
to determine the value of k. at dy/d; > 0.76, by reversing the definitions of d;. and ds.



82 N. J. THEMELIS

- § wodl) Pﬁ(%izg)
— E e
v u
.\
[~ L
1 2
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Also, Fig. 8.8 shows that in the case of very large contraction in flow (do/ dl — 0) the
limiting value of k. is 0.5 and the energy loss of (8.4.3) becomes

Wy, . = 0.25%3. (8.4.5)

8.5, THE FRICTION FACTOR

In the applications of the overall energy balance discussed in §8.3, the friction force acting
on the surface on the conduit was assumed to be negligible. However, in most engineering
problems, such an assumption would not be realistic. Therefore, we need to find a correlation
between the frictional loss, W{,, and the measurable characteristics of the flow system.

Let us consider the flow of an incompressible fluid at an average velocity (%) through
a horizontal pipe of length L and diameter d;, (Fig. 8.9). Under these conditions, there is no
change in the potential energy and kinetic energy contents of the fluid and also there is no

mechanical work done. Therefore, under steady state conditions, the overall energy balance
yields

Py
dP_ P -P
2 P

= Wy. (8.5.1)
Py

This equation expresses the fact that between points I and 2, the fluid loses a certain
. amount of pressure energy by doing work against friction. However, (8.5.1) is of little
practical use for calculating the pressure drop, unless we have a way of expressing the
frictional loss in terms of some of the other known parameters of the flow system.

Such a correlation can be obtained by introducing the friction factor, fi., a dimension-
less number which is defined as the ratio of the shear stress at the surface of a conduit (or
drag force per unit surface area of conduit wall) to the kinetic energy per unit mass flow of

the fluid: o
.fl'r =

()

Since the only forces acting in the horizontal pipe between points [ and 2 are due
to friction and pressure (since there is no change in the kinetic and potential energies), a
balance between these two forces (Fig. 8.9) yields

(8.5.2)

nd>
= ro{nd,L) = (P, — P2) (qﬁ) : (8.5.3)
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Table 8.1. Typical Values of Material Roughness

Material €, CIm
Copper tubing 1.0x 107
Finished concrete 4.6 x 10°
Unfinished concrete 1.2 x 1072
Cast iron 1.8 x 1072
Refractory 27 x 107"
Riveted steel 4.6 x 1072
Corrugated metal 21x107

By solving for 7 from (8.5.3) and substituting in (8.5.2), we obtain the following
equation for the friction factor: '

dp(P 1 — P 2)
P = . 8.5.4
f f; 2 Lpﬁz ( )
Alternatively, the above equation can be expressed as a statement that the ratio -of

pressure loss due to friction to the kinetic energy of the stream is proportional to the friction
factor: 1
@ = _Lffr- (8.5.5)
Z U

Numerous experimental studies have shown that the friction number depends only on the
Reynolds number and the roughness of the pipe wall, e (Table 8.1); the latter is usually
expressed as the ratio of the actual surface roughness (i.e., the height of protrusions from
surface) divided by the inner diameter of the pipe (relative roughness = e/d,).

A plot of fr against the Reynolds number, which summarizes a very large number of
experimental data, is shown in Fig. 8.10 [2]. This plot can be divided into four regions:

a. For Re < 2100, the experimental data are represented by a single line:

16
ffr — Ec'

This region corresponds to laminar flow, and the relationship of pressure
drop versus flow velocity (Fig. 8.10) is identical to the theoretically derived
Hagen—Poiscuille equation (Chapter 4, equation (4.5.9)).

b. Region 2100 < Re < 4000 represents the transition between laminar and
turbulent flow; it is difficult to obtain reproducible data in this region and,
in general, the values of fi; are higher than indicated by the dashed line
extension of the line for the laminar region (Fig. 8.10).

c. Region Re > 4000 cormresponds to turbulent flow of the fluid; in this region,
the friction factor is a function of both the Reynolds number and the relative
roughness of the pipe.

d. Finally, for each pipe roughness curve, a value of Re is reached where fi;
becomes nearly independent of the Reynolds number and is only a function

(8.5.6)
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of the pipe roughness. Figure 8.11 {2] is a nomograph of relative roughness
and friction factor in this region of complete turbulence.

It should be noted that the friction factor correlation is applicable for fully developed
flow, which is usually assumed to exist after the fluid has travelled a distance of over fifty
pipe diameters (L/d, > 50). It cannot be used for short pipes where entrance effects can
be very important. ' R
' From the above discussion, it can be concluded that, for pipe flow, the work expended
to overcome friction in the overall energy balance (see (8.2.3)) can be expressed in terms
of the friction factor as follows:

Wi =2 f,,ﬁ‘*’ﬁ. (8.5.7)
d'P

In summary, the definition of the friction factor provides a very convenient and reliable
tool for engineering calculations. It can serve as a model of the ingenuity and simplicity
that are essential in the development of lasting engineering correlations. Some examples of
the use of the friction factor are presented below.

Example 8.5.1

On the basis of the definition of the friction factor and Fig. 8.10, it is required to derive a
relationship between the flow velocity in a pipe and the pressure difference along the length
L of the pipe. '
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From Fig. 8.10 and also from the definition of the friction factor (see (8.5.4)), we obtain
the following two equations for fi,:

Y. 16 16p
fe = Re = Lap" (8.5.6),
dp(Pl — P2)
= ——— 8.5.8

Combining these equations and eliminating fr, yields the following equation for the velocity
in the pipe:
(P, - Pp)d2

P P
! U '— —32PL . (8-5-9)
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This equation is identical to (4.5.10) (Chapter 4) which was derived analytically from the
differential momentum balance.

Example 8.5.2

Cooling water (T" = 21°C; p = 1000 kg m~3; = 1 ¢cP = 0.001 kg m~! s~1) is pumped
through a pipe with an internal diameter of 0.05-m and 90 m long (wall roughness, ¢ =
4.5x10~% m) at a rate of 15 m® h~1. Calculate the pressure difference and the corresponding
theoretical power requirement (i.e., at 100% electromechanical efficiency of the pump) to
maintain this flow. '
a. Calculated velocity corresponding to flow of 15 m® h~! = volumetric flow
rate/cross-sectional area of pipe = 2.12 m s~ 1.
b. Calculated Reynolds number for water at 21°C:
Re = dyup _ 0.05 %212 x 1000 _ 106, 000,
7 1x10-3
c. Bstimate of friction factor: For Re = 106000 and relative roughness (e/d,}
of 4.5 x 107°/0.05 = 0.0009, we obtain from the friction factor plot of Fig.
8.10

for = 0.0055.

Since by the definition of the problem there is no change in velocity of flow or elevation
of the pipe between the inlet and outlet points, the change in pressure energy between the
inlet and outlet points must be equal to the energy used to overcome the frictional forces
along the length of the pipe. Therefore, from (8.5.5):

Py — Py =2fpT°L}d, = 2 x 0.0055 x 1000 x 2.12% x 90/0.05
= 89000 kgm™?! s~2 = 89000 Pa.

The theoretical power requirement can be calculated by multiplying the pressure drop
along the length of the pipe by the cross-sectional area of the pipe and by the flow velocity,
le.,

force/area x area x distance/time

= force x distance/time = work/time = power;
power = 83000 x Trdf,/4 x 2.12
=370kgm®s™3 = 3701/s = 370 W = 0.37kW.

8.5.1. Friction Factors for Noncircular Conduits

The friction factor correlations developed for circular pipes may also be used for conduits of
noncircular section, provided that a hydraulic mean diameter (d),) is used, which is defined
by the following equation:

_ 4(cross-sectional area)

"~ 7 wetted perimeter (8:5.10)
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It can be seen that for a cylindrical conduit the above equation yields
(=)
dp = 1T—d'p = dp,
and for a duct of rectangular cross-section {; by I:

41,1, _ 21112
2“1 + fz) - L+ 12.

dy, = (8.5.11)

Example 8.5.3

Combustion gases at an average temperature of 700°C are exhausted through a rectangular
duct (0.6m x 0.3-m cross-section X 50-m long) at the rate of 1.2 m® s~!. Calculate the
pressure drop through the duct if the flow is assumed to be isothermal and incompressible
(i.e., negligible density variation through duct):

p =024 keg/m®, p=0.05cP;

relative roughness of duct wall = O.GOOE.

. Average gas velocity: 1.2/(0.6 x 0.3) =6.67 ms™".

. Hydraulic diameter of duct: 2 x 0.6 x 0.3/(0.6 + 0. 3) 0.4 m.
. Reynolds number = 0.4 X% 6.67 x 0.24/0.00005 = 12800.
Friction factor for Re = 12800, e/d = 0.0005: f = 0.0075.
Calculated pressure drop through duct: 20.0 Pascal.

o oo

Example 8.5.4: Flow Through a Curved Pipe

For fluid flow through curved pipes and coils, the friction loss per unit length is higher
than for straight conduits. Also, the critical Reynolds number for the coil (Re,), i.e., where
transition occurs from laminar to turbulent flow, in the range of 15 < d./d, < 860 is
expressed as follows [4]:

4.\ 032
Re, < 20000 (d—") , (8.5.12)
where d. and d, are the coil and pipe diameters, respectively.

It has also been shown [4] that for turbulent flow in coils, the friction factor, fi c, is
related to the friction factor in straight pipes, fi, by the following correlation:

0.05
fire _ (Ref) : (8.5.13)

-f {r a2
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Figure 8.12. Correction of friction factor for coiled pipes.

This correlation is plotted in Fig. 8.12.

In the design of a melting furnace, it is necessary to use an induction coil consisting of
20 tums of 0.3-m diameter coil. The copper tube to be used has a 0.01-m internal diameter
and, in order to maintain adequate cooling of the coil during operation, the average flow
velocity through the coil must be maintained at 2 m s~!. We need to calculate the required
water supply pressure to provide this flow. The Reynolds number for the pipe is

dZp _ 0.01x 2.0 x 1000
S LI = 20,000
Rep == 0.001 ’

100
p= m(;kgl 4 =0.01P=0.001kgs 'm™L.

By introducing numerical values in (8.5.12), we find that the flow is turbulent. There-

fore, from (8.5.13)

f 0.01\2]""

fr,c .

— = |20000 — = 1.168.
ffr [ 00 8 (03) ]

We now obtain fi,. for flow through the pipe from the friction factor plot (Fig. 8.10):

frr = 0.0068.

Therefore,
Jr,c = 1.168 x (.0068 = 0.0079.

Finally, we use the equation relating the pressure drop through the coil to the friction factor
(see (8.5.4)) to obtain

20 x 7 x 0.3

(P - 1.92) = 2 x 0.0079 X ( o1

) x 1000 x 2.0% = 119070 Pascal = 1.178 atm.
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up

Figure 8.13. Drag force acting on a spherical particle in relative motion to fluid (streamlines
shown at Rep = 200).

8.6. THE DRAG COEFFICIENT

Flow around solid objects is of interest in many materials processing systems, such as
fluid bed reactors, flash reactors, metal atomizing processes, spray coating and many others.
When a particle is in relative motion to an enveloping fluid, a drag force is exerted on the
particle (Fig. 8.13). This force is due to the shear stress exerted in the boundary layer of
the fluid next to the surface of the particle. As in the case of flow through a conduit, this
shear stress is due to the viscosity of the fluid and the velocity gradient between fluid and
particle.
Experimental work has shown that this drag force is a function of the particle size, the

_ relative velocity between fluid and particle and the kinematic viscosity of the fluid. On the
basis of an energy balance, similar to that carried out in §8.5 for fiow throngh a conduit, it
has been shown that the drag force can be expressed as follows:

2
Fy = Cid, (%ﬂ) , (8.6.1)

where C; is the dimensionless drag coefficient; A, is the cross-sectional area of particle
projected on a plane perpendicular to direction of flow; p is the fluid density; 1, is the
relative velocity between particlc and bulk velocity of ﬂuid

parﬂc]e shapc, surfacc roughncss and Reynolds numEer whlch 15 dcﬁned as

dplipp

Re, =
Poop

(8.6.2)
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Figure 8.14. Drag coefficient for spheres, cylinders and plates as a function of Reynolds
number [5].

The similarity between the drag coefficient, for flow around solids, and the friction
factor, for flow in conduits, is evident.

Figure 8.14 [5] is a logarithmic plot of experimentally determined values of the drag
coefficient plotted against Re, for spherical particles. As indicated on the graph, this plot
may be conveniently divided into at least three regions of flow:

a. Creeping flow: 10710 < Re, < 2. In this region, the drag coefficient is proportional
to the Reynolds number and can be expressed as

24

Cy=—.
d Re

(8.6.3)
By substituting for Cy from the above equation in (8.6.1) for a spherical particle of
cross-sectional area A, = ﬂd;?; /4, we obtain the following equation for the drag force acting

on the particle:
Fq = 3ndyupp. (8.6.4)

This equation is called the Stokes law in honor of Stokes, who derived it by integrating
the Navier—Stokes equations for the case of creeping flow.

b. Inmtermediate Region: 2 < Re, < 500. The experimental data in this region may
be represented by the following approximation:

18.5

0.6"
Rep

Cam (8.6.5)

The drag force acting on a spherical particle in this region is expressed by

2
_ 2.311rd§pup.

d = 0.6
Rep

(8.6.6)
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Figure 8.15. Terminal velocity of spherical particles of different densities falling through air
at 900°C.

c. Newton’s Law Region: 500 < Re, < 2 x 10°. In this region, the drag coefficient
remains approximately constant and independent of the Reynolds number:

Caz = 0.44. (8.6.7)
The corresponding drag force on a spherical particle is _
Fy = 0.055d2pul. (8.6.8)

Inspection of the above equations for the drag forces acting on a particle shows that the
viscosity appears in the first and second regions but not in the third. The physical reason for
this is that the total force acting on the particle is made up of two components: one due to
viscous forces and the other due to inertia forces. At low velocities and Reynolds numbers,
the viscous forces are predominant while the reverse is true at high velocities.

8.6.1. Terminal Falling Velocity of a Particle

As a particle starts falling through a fluid, it will accelerate until the force of gravity
producing this motion is exactly balanced by the drag force which resists it. From this
point onward, the particle will move at a constant speed, usuvally termed the terminal
falling velocity. The terminal falling velocity can be determined by equating the force of
gravity, acting on the particle, to the drag force. Thus, for the creeping flow region we have

wds
F,= -—Gz(pp — pf)g =F; = 3'ﬂ'dpﬂtﬂ-; (8.6.9)

and therefore .

dz9(pp — Ps)
184

where v, is the terminal velocity, and p, and p; are the densities of the particle and the

fluid.

) (8.6.10)

t=
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Figure 8.15 shows the terminal velocities of particles of various denstties falling through
air at 900°C.

Example 8.6.1

Determine the terminal falling velocity of a IOO-micron- matte (30% Cu) droplet settling
through a 38% Si02/33% Fe molten slag at 1150°C. !

Data:
matte density = 4.1 g cm™3
slag density = 3.5 g cm™3,
slag viscosity = 2.0 P =20gcm™! s7!,
gravitational acceleration = 980 cm s~2.

Let us assume that the liquid matte flow past the particle is in region a, i.e., Re, < 2; then,
from (8.6.10),

_ d2g(pm — ps) _ (100 x 107*)? x 980.7 x (4.1 - 3.5)

t 18 18 x 2
—0.0016cms™! =5.8 cmh~l.

We can now calculate the Reynolds number of the falling droplet:

100 x 10~* x 0.0016 x 3.5
- 2

Re = 2.8x%x1075,

We can see that our preliminary assumption that Re, < 2 was correct.
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NINE

Applications of the Overall Energy Balance

The overall energy balance developed in Chapter 8 can be applied to a wide variety of
processing problems. However, it is very important to select properly the control volume
across which the balance will be made so that it represents accurately the physical problem
under consideration. Also, in the case of complex physical systems, engineering judgment
must be used to decide on the simplifying assumptions to be made, in order to provide the
desired balance between ease of solution and degree of accuracy required in the solution,
Some examples are presented in the following sections. It should be noted that ali
velocity terms (u1, ug, etc.) shown from now on represent average velocities at a particular
location and the overline marker is omitted. ‘

9.1. PROBLEMS IN INCOMPRESSIBLE FLOW
Example 9.1.1

Figure 9.1 is a schematic diagram of a 0.05-m i.d. pipeline (¢/d = 0.001) through which
an aqueous solution is pumped at a rate of 11 m® h~l. The conduit consists of a 91-m
long horizontal section, containing a gate valve; this leads into a 90° elbow bend and an
18-m elevation to a second horizontal section (24-m long) and a third elbow bend through
which water is discharged on the surface of an ore vat. The density and viscosity of the
solution may be assumed to be 1 g cm™2 and 1 cP, respectively. It is required to calculate
the pressure required at the bottom end of the conduit to maintain this flow.

In this case, the control volume lies between planes 1 and 2 (Fig. 9.1). As the fluid
passes between these two planes, its potential energy changes because of the 18-m elevation;
furthermore, work is done to overcome the frictional forces in the conduit, orifice, elbow
bends, and gate valve. Since the fluid is incompressible and the pipe diameter at the inlet
and exit points of the control volume is the same, the kinetic energy term is negligible
(u1 = u2).

For the purposes of such calculations, it is convenient to represent the frictional loss
through each fitting in the pipe by assigning to it an equivalent pipe length. Table 9.1 is a
typical tabulation of equivalent lengths for a number of pipe fittings; for convenience, such
lengths are expressed in terms of “number of pipe diameters.” In this case, the equivalent
lengths of the various fittings are found to add up to about 10 m. Accordingly, the conduit
may be assumed to be consisting of a total pipe length of

L=(91+18+24+10)m=143m.
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Figure 9.1. Ilustration of Example 9.1.1.

Table 9.1. Equivalent Length of Pipe Fittings

Pipe
Fitting diameters

45" elbows 15
90" elbows (standard radius) 3040
90° square elbows 60
Entry from leg of T-piece 60
Entry into leg of T-piece 0
Unions and couplings generally very small
Globe valves fully open 60-300
Gate valves: fully open 7

3/4 open 40

1/2 open 200

1/4 open 800

As discussed in the previous chapter, for steady state conditions, the mechanical energy
balance is

2
1 dP
E (u%-—-u%) +g(32—21)+/?+W;+W;r =0. (9.1.1)
' 1
Since there is no work done by the fluid, W), = 0. Furthermore, for an incompressible
fluid ”
—P '
/ @b _B-h (9.1.2)
] P P

Also, there is no change in the diameter of the conduit so that g = u1; finally, W], can be
expressed in terms of the friction factor, as defined in Chapter 8 (see (8.5.7")). Therefore,
(9.1.1) can be written as follows:

L
P-P=p [2ff, Euf -+ g(za — zl)] : (9.1.3)
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Figure 9.2. Illusiration of Example 9.1.2.

Next, on the basis of the stated volumetric flow and the pipe diameter, the flow velocity
in the pipe is calculated to be 1.56 m s~!. We now know all the quantities on the right-hand
side of {9.1.3), with the exception of fi, which must be obtained from a friction factor
chart. To do so, we need to calculate the Reynolds number:

dujp _ 0.05 x 1.56 x 1000
o 1x 10-3

From Fig. 8.10, for Re = 78,000 and e/d = 0.001, we find that f;, = 0.0058.
Substitution of this value into (9.1.3) yields

P, — P, =80, 700 Nm™Z (frictional loss)
+ 176,400 Nm~2( potential energy change)
=257,100Nm~?% = 2.54 atm.

Re = = 78, 000.

Example 9.1.2.

In a continuous vacuum degassing operation, molten steel is discharged from a nozzle at
the bottom of a ladle into a vacuum chamber (Fig. 9.2). Develop a relationship between the
flow rate of metal and time after the nozzle is opened which a) neglects frictional losses,
and b) allows for frictional losses in the nozzle.
Data:

ladle diameter, d; = 2.44m,

initial level of metal in ladle, zo = 2.0 m,

internal diameter of nozzle, d,, = 0.051 m,

length of nozzle, L = 0.46 m (relative roughness: 0.01),

density of steel, p = 7100 kg m—3,

viscosity of steel, & = 1.5 cP = 0.0015 kg
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In this case, the control volume is established between reference plane 1, corresponding
to the surface of the metal bath to the metal level in the ladle at any time ¢, and plane 2 at
the discharge end of the nozzle (Fig. 9.2). Since the metal level in the ladle, z, is clearly
a function of time (as are 41, u2, and possibly W; ), one may ask whether it is appropriate
to use the steady-state energy balance of (9.1.1). However, it should be noted that this
equation is expressed on the basis of unit mass of fluid flowing, so that the total amount
of steel present in the ladle does not enter into the energy balance, apart from affecting the
value of the metal level 2.

Equation (9.1.1) is simplified by considering that P, = 1 atm (above the metal bath)
Py = 0 ( in the vacuum chamber) and that us >» uy, since the diameter of the ladle is
much larger than that of the nozzle. Furthermore, we may select the reference level for the
. potential energy so that 2z, = 0, at the bottom of the orifice. It is noted that, in this case,
the frictional loss, W{,, consists of two terms: the sudden contraction at the entrance to the
nozzle which, from (8.4.5) (Chapter 8), is equal to 0.25u2 eand the frictional loss through
the nozzle (stated in terms of the friction factor equation). Accordingly, the energy balance
is expressed as follows:

L
%2 ~gz— ‘% + (2f:r u? +0. 25u2) =0. (9.1.4)

a. Neglecting Frictional Effects. If frictional effects are assumed to be negligible,
W, = 0, and the above equation simplifies to

1/2
w=vE(oz+ 2} (9.15)

The volumetric flow rate through the nozzle is related to the nozzle velocity and cross-
sectional area and also to the rate of change of metal depth in the ladle:

md2 dz md}

v—u2T= e for 2.46m > z > 0.46 m. (9.1.6)

By combining (9.1.5) and (9.1.6), we obtain

dz_ od2 P\Y?
-5 = 2d2 (g +?‘) , (9.1.7)

where d,, and d; are the diameters of the nozzle and the ladle. Equation (9.1.7) is a first-order
differential equation which can be integrated to yield

2 d? P2
t=Cl——\/—:—’(gz+—1-) .
g P

= (9.1.8)

Substituting the boundary condition, z = z at ¢ = 0, we obtain the value of the mtcgratlon
constant Cy:

Gy =

1/2
? ﬁ (gzc + -{;l) ' (91-9) .

n
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and by substituting in (9.1.8)

3 & P\
t= V2 & 1) - (gz+ —1) . (9.1.10)
. p p
’Ez"uﬂ:\\l DA
Henoosesary, (9.1.10) sty K gk provnde an explicit relationship be-
tween the time of metat discharge from thc ladlc and the liquid depth in the ladle. From

(9.1.10), we can calculate the time required to empty the ladle for the given values of
720=246m, zf =046 m, P, =1 atm = 101,325 Nm~2 and P, /p = 14.27 m? s~ %

_ V2 248
T 9.81 7 0.0512

[(9.81 x 2.46 + 14.27)/2 — (9.81 x 0.46 + 14.27)112] = 615s.

The above simplified treatment allows us to make a rough estimate of the time required
to empty the ladle and also of the nozzle velocity, which can be used in the following
calculation of the effect of friction on the time to empty the ladle.

b. Allowance for Frictional Effects. The appropriate form of (9.1.1) for this case is

‘U% P]_
E’ -gz— —p' + (2ffr '1'.52 +0. 25‘152) = 0, (9.111)
n

where L is the length of the nozzle. We proceed, as previously, to express s in terms of

the other variables: 12
gz+ o |
Uy = ————-——— , (9.1.12)
0.75 + 2ffr an T

and by substituting for ug from (9.1.6), as before

dz d? gz + £ M
—— =2 = ) (9.1.13)
dt  df ]10.75+2f; i
As in the pn_avious case, the boundary condition is z = zp at ¢t = 0. If we assume
that the flow is highly turbulent, so that the friction factor is nearly constant with Reynolds
number (Fig. 8.10), the above equation can be integrated for the boundary condition 2 = zg
at t = 0 to yield -

2 @ L\ L/2 P 1/2 P 1/2
™+ 2 _ — — . g
t= gf-dﬁ (0 + 2fi n) (gzo+ p) (gz+ p) (9.1.14)

This equation has been put in the same form as (9.1.10) to indicate the similarities
between the two equations. A first estimate of the friction factor may be made by considering
the range of nozzle velocities, and hence the corresponding Reynolds numbers, for the
frictionless case. Thus, from (9.1.5), the initial velocity at the nozzle, for z = 2.46, is

ugi ° V2 x (9.81 x 2.46 + 14.27)Y/? = 8.77 ms™?
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Similarly, the final velocity, for z; = 0.46 m, is
g 5 % 6.13ms™!

The comresponding values of the Reynolds numbers are calculated to be 2.12 x 10° and
1.48 x 10°, respectively.

The friction factor chart of Fig. 8.10 shows that for the given relative roughness of
0.01, the friction factor is about 0.0095 for both of these velocities. Also, it can be seen that
even a tenfold reduction in the linear velocity would not result in any significant change in
the friction factor at these very high Reynolds numbers. Therefore, the assumption that fi;
is constant is reasonable for this case. However, if f;, were a function of velocity, (9.1.13)
could be solved by trial and error, e.g., using Lotus 1-2-3.

Inspection of (9.1.10) and (9.1.14) shows that the time of metal flow in the presence of
frictional effects can be determined either by substitution of the numerical values in (9.1.14)
or by introducing the friction factor correction in the estimated time from (9.1.10), i.e.,

.9 L\1/? 2
t=614x — [ 0.75 4+ 2f,— =614 x — (0.754+ 2 % 0.0095 %
ﬁ( Js dn) ﬁ(

=833 seconds.

0.46 \ /2
0.051)

It can be seen that the neglect of the frictional effects in case a resulted in an appreciable
error.

9.2. PROBLEMS IN COMPRESSIBLE FLOW

The previous examples dealt with incompressible fluids, such as water and molten metals,
where the density of the fluid could be assumed to be constant. In the case of flow of gases,
which are compressible, the use of the Bernoulli equation is somewhat more complex, as
illustrated in the following examples.

9.2.1. Isothermal Gas Flow

At steady state conditions in a horizontal pipe (Az = 0) and for W], = 0, the overall energy
balance may be written in differential form as follows:

,u2 ffr
d(—z—) » — -+ dp T u’ =g, (9.2.1)

where dz is a differential element of the total length, L, of the pipe. In order to integrate
this equation, it is convenient to introduce the mass flux of the fluid, G (dimensions: Mt~
L~2), which for a conduit of constant cross-section, as in this case, does not change with z:

u

G=pu= 7 (9.2.2)

where V = 1/p is the specific volume of the gas in cm3® g=1. By replacing u in (9.2.1) by
G, we obtain
zfl'r

G*VdV +VdP + ==
dP

G*vidz =0, (9.2.3)
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and by dividing all terms of the above equation by V2 and integrating over the length of
the pipe, L:
2

Vs 2f

2 2 ir

G an + . V d
1

G:L =0, (9.2.4)

where the subscripts 1 and 2 denote the beginning and the end of the pipe length L. In the
above integration, it was tacitly assurned that the Reynolds number is high enough so that

fi- is constant over length L of the pipe (see Fig. 8.10). If this is not so, the friction term
in the above equation must be replaced by an integral:

2
2G?
a4 / Jidz
P
and the equation integrated by a numerical method,

Returning to (9.2.4), all the terms are known with the exception of the pressure integral.
However, for isothermal flow of gas, the ideal gas law yields:

PV = P V. _ (9.2.5)
Therefore, , \
2 _
1f %; = 1 }P;fg = P;Plvl : (9.2.6)
Also, from the ideal gas law
%’ = %, (9.2.7)
and _1 BT
PV =nRT = ERT =30 (9.2.8)

where n is the number of moles (here n = 1/M), T is the absolute temperature of the gas,
R is the universal gas constant (Table 2.2), and M is the molecular weight of the gas. By
combining (9.2.4) and (9.2.6)«9.2.8), we obtain:

P (P}-P) 2faL
21, 1 2 1
G“In 7, + 2PiVA + d,

G =0, (9.2.9)

or
P (P2-POYM 2f.L
21 X1 2 1 T
G*ln 2 + SRT -+ 4,

Either of the above two equations can be used to compute the required pressure for
providing a certain mass flux G in isothermal gas flow.

G2 =0. (9.2.10)
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9.2.2. Adiabatic Flow of an Ideal Gas

Let us now develop the approximate equivalent of (9.2.9) for the adiabatic expansion of an
ideal gas, i.e., without gain or loss of heat during the change from P, to F;. Here we start
with (9.2.4):

v 2f, _

2 2 fr 2

In — — L= 2.

G nVl+_/V dPG 0. (9.2.4)
1

For adiabatic conditions, the P—V relationship needed for evaluation of the pressure

integral may be approximated as follows:

PV =PV, (9:2.11)
where -
_ Cp _ heat capacity of gas at constant pressure
7= €, ~ Theat capacity of gas at constant volume -
Therefore, v . p _
In2==ln>2, 9.2.12
w v PR’ ( )
and ) .
[E - [BreE_(1)E &)“’“”'”’_1 (6.2.13)
v/ plhyy \v+1) Vi |\R ' -
1 1
By combining (9.2.4), (9.2.12), and (9.2.13), we obtain
G P v\ AR AR 2frr 2
-—1 — -1 G‘L =0, 9.2.14
P2+(“!+1) Vi [(Pl) dp ( )

From this equation we can evaluate the mass flux through the conduit, if P; and P> are
known; alternatively, if P, and (G are given, P, can be computed by trial and error.

9.3. SONIC VELOCITY AND SUPERSONIC JETS

In some processes for metal refining, such as the basic oxygen converter for steelmaking, a
high-velocity gas jet is injected in the reactor through a lance. Equation (9.2.9) can be used
to examine how changes in the downstream pressure, P, affect the mass flux G of a gas
flowing through a nozzle.

By rearranging (9.2.9) for isothermal flow we obtain the following expression for G:

G2 — — (P22 — P]?) .
[n & +2/k] 2P V4

(9.3.1)

Equation (9.3.1) shows that for P, = P, and also for P, = 0, G must be equal to zero.
It follows that at some intermediate value of P, ¢ must have a2 maximum value. For a
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fixed value of P, this maximum will occur at dG/dP, = 0. It has been shown that at this
maximum mass flux, the fluid _vclocity is expressed as follows:

P
2
==, 9.3.2
; (03.2)
and for an ideal gas in isothermal flow:
p | dP RT
2 T o— — = e—
u.! - p (dp) M - (9-3.3)

It can be shown that u, in the above equations corresponds to the velocity of sound
in the fluid and it is the speed at which a pressure wave propagates through the fluid.
Physically, this means that if the downstream pressure were to be reduced below a critical
value, which depends on the upstream pressure and on the properties of the fluid, the flow of
the fluid would be faster than the rate of propagation of the pressure wave; in other words,
the upstream end of the pipe or nozzle “would not know” that the downstream pressure has
been decreased to a value below the critical value,

The physical result of reducing the downstream pressure below the critical value of P
results in a discontinuity, called a shock wave, '

It should be noted that in describing the propagation of the pressure wave, we assumed
isothermal flow. However, in practice, it would be extremely difficult to maintain isothermal
conditions and, in most cases, the flow would be adiabatic and the speed of propagation of
the pressure wave would be expressed as follows:

Ul = 'y%:-. (9.3.4)

In view of the above, sonic velocities may not be exceeded in a pipe of constant cross-
section. However, as discussed in the following section, it is possible to achieve supersonic
velocities by the use of a convergent-divergent nozzle.

9.3.1. The Convergent-Divergent Nozzle

For gas flow throu gh a short length of pipe or nozzle, the potential energy, friction and work
terms in the energy balance equation may be assumed to be negligible and it can be written
as follows:

2
2 _ a2
L2 - ket +deP =0. (9.3.5)

For an adiabatic system, the pressure integral can be evaluated by substituting for V from
(9.2.11) (§9.2.2) and integrating to yield

2
AP p -1y
] =fP1”"’Vl =77 = PVi ('r z_l) [1_ (F’:‘) , (9.3.6)
1
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or the equivalent expression

2 2 ' (v—1}/~
—— =-PV (7_ 1) [1 (Pz) ] . (9.3.7)

Equations (9.3.6) and (9.3.7) express the conservation of the sum of kinetic and pressure
energies for the frictionless, adiabatic flow of an ideal gas. This equation is valid for both
subsonic and sonic velocities.

Let us now consider how changes in the cross-sectional area of a conduit may affect
the velocity. Since the potential energy and frictional terms are assumed to be ncgllglblc
the energy balance equation can be written in differential form as

udu + VdP = udu + ar _ 0. (9.3.8)

p

Since the mass flow rate through a conduit remains constant:
™ = pud, (9.3.9)

we can differentiate (9.3.9) and then divide each term by the mass flow rate to obtain

du dp dA
2 + ? + '71— =0, (9.3.10)
which can be rewritten as P do /dP "
24 p _

- 1P ( ) +—r =0 (9.3.11)
Finally, by combining (9.3.3), (9.3.8), and (9.3.11), we obtain

du dA

= —, 3.12
” (u2 1) 1 (9.3.12)

By definition, the ratio of velocity in a fluid to the velocity of sound under the same
conditions, u/u,, is called the Mach number and is denoted by Ma. Therefore, (9.3.12) may

be written as P ) A
u
du_ (_Ma2 . 1) (I) . (9.3.13)

Inspection of (9.3.13) shows that when the velocity is subsonic (Ma < 1 and Ma’—1 <
0), an increase in the cross- sectional area of the conduit will result in a decrease in the
flutd velocity; this behavior is the same as discussed earlier for the flow of incompressible
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Figure 9.3. Velocity profiles in a convergent-divergent nozzle.

fluids. However, when the velocity is supersonic (Ma > 1 and Me? — 1 > 0), an increase
in the cross-sectional area will lead to an increase in the fluid velocity.

Therefore, a gas may be accelerated to supersonic velocities by using a convergent-
divergent nozzle of the type shown in Fig. 9.3. In this nozzle, the flow is initially subsonic
in the convergent part of the nozzle (plane I, Fig. 9.3) and is accelerated to sonic velocity
at the “throat” (plane 2). Then, further acceleration to supersonic speed is possible in the
divergent part of the nozzle.

Figure 9.3 also shows that, in accordance with (9.3.13), if sonic speed is not reached
at the “throat” of the nozzle, the velocity will be decreased rather than increased in the
divergent passage of the nozzle. The criterion for achieving sonic velocity at the “throat”
(ua = wu,) can be established in the following way: By establishing an energy balance
between planes 1 and the throat of the nozzle (Fig. 9.3), we obtain for adiabatic expansion
conditions (see (9.3.7)):

u? - u? o P (v=1)/~
g = PV, (7_ 1) (?2-) —-1]. (9.3.14)

By noting from (9.3.4) that the sonic velocity u, is expressed by

w2 =12 =PV, (9.3.15)
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and assuming that u? < 42 and can be neglected from (9.3.14), combining (9.3.14) and
(9.3.15) results in the following criterion for the establishment of sonic velocity at the
“throat” of the nozzle (plane 2):

2 . : (v—1}/~
¥ _a2_y__2 |{B -
" =M, =1= po— (Pz) 1] . (9.3.16)

It can be seen that the criterion for the establishment of sonic velocity at the throat is
defined in terms of <y, which is a property value of the gas, and the ratio P /P,. The value
- of this-critical ratio can be obtained from (9.3.16):

P 2 a/{v-1)
(_2) _ (_) . (9.3.17)
P crit v+1 -

The critical pressure ratio of (9.3.17) must be provided in order for the flow to become
supersonic in a converging-diverging nozzle at the throat. If the ratio Pz/ P, is larger than
the critical ratio, the flow will be subsonic, and will remain so, independently of the design
of the diverging section of the nozzle. At room temperature, the critical pressure ratio for
most gases of interest is in range 0.49-0.55.

The velocity at the end of the divergent section may be evaluated by applying (9.3.6)
between planes 2 and 3 of the nozzle (Fig. 9.3). In this way, we obtain:

2 2 {(r—1)/~
us _ % v _(Bs
2 =3 + BV, (’}’ — 1) [1 (Pg) ] . (9.3.18)




Thermal Conductivity and Steady State Conduction

10.1. INTRODUCTION TO HEAT TRANSFER

The processing of materials is usually carried out above atmospheric temperature. Before
they can react, the feed materials and reagents must be heated to the processing temperature
and, ultimately, the products have to be cooled to the temperature of the environment. Thus,
at various stages in the processing sequence, heat has to be supplied to or removed from
the reaction system.

The steelmaking process (Fig. 10.1) is a good illustration: Starting with iron ore con-
centrates, pellets are formed and then sintered. In the sintering process, pellets are heated
to about 1100°C and then cooled prior to their introduction into the blast fumace. In the
furnace, the iron oxides are reduced to produce liquid iron which is tapped at about 1400°C
and transferred in ladles to the steelmaking converter.

In the subsequent refining of high-carbon iron to steel, carbon and other elements are
removed by means. of oxygen injection and the heat of oxidation increases the temperature
of the steel to about 1550°C. The furnace is than tapped and the metal is transferred in
ladles to a casting bay, where it may be cast to ingots. The ingots lose heat to the atmosphere
until they are moved to a reheating furnace where they are heated to a uniform temperature
before they are rolled to a finat product in a rolling mill. It can be seen that the rate of heat
transfer plays a prominent role throughout the processing sequence.

For the ideal case, where the heat losses of the system are negligible, the heat re-
quirements at each stage of a process can be determined on the basis of thermodynamics.
However, in order to determine the rate at which these heat requirements can be added or
removed from the system, and also the rate of the inevitable heat losses, we must use the
heat transfer theory which is the subject of this chapter and Chapters 11-13.

Heat is transferred by the following three mechanisms:

a. Conduction: Conduction is the transfer of thermal energy from a higher
to a lower temperature zone in a material (Fig. 10.2). In fluids, conduc-
tion takes place at the molecular level with the more energetic molecules
passing energy to their lower temperature neighbors. In solids which are
not conductors of electricity (dielectric materials), conduction takes place
by means of the oscillation of atoms which creates lattice waves; in good
conductors of electricity, conduction occurs mostly by the motion of free
electrons which move about similarly to molecules in a gas. The same is
true in liquid metals, which have a relatively high electric conductivity.

105
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Figure 103. Heat transfer by convection.

b. Convection: In this case, thermal energy is moved from one part of the
system to another as a result of the bulk motion of a fluid. This is illustrated
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in Fig. 10.3, which shows a fluid of bulk temperature 7} flowing past a solid
surface at a higher temperature 7,; heat is transferred from the surface by
elements of fluid which travel from the bulk and remain close to the solid
surface for a short period of time. ,

¢. Radiation: Both the conductive and convective transmission of thermal
energy require the presence of an intervening medium (e.g., the solid body
in the case of conduction, and the fluid in the case of convection). On the
other hand, radiation between two surfaces occurs by the transmission of
photons or electrornagnetic waves through space and does not require the
presence of an intervening medium (Fig. 10.4).
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10.2. THE CONCEPT OF THERMAL CONDUCTIVITY

The nature of heat conduction may be illustrated by the following experiment (Fig. 10.5): A
thin plate of thickness Y is initially at the uniform temperature T;. At time ¢ = 0, surface 2
of the plate is cooled to the temperature 75 (e.g., by spraying with water) while the surface
1 is maintained at 77 (e.g., by means of an eleciric heater). Experiments have shown that
the sudden change in temperature of the lower surface will gradually affect the temperature
profile throughout the thickness of the slab, as illustrated in Fig. 10.5. After a sofficiently
long pericd of time for steady state conditions to prevail, a linear temperature profile is
established across the plate; if we measure the heat flow from surface 1 to surface 2 (e.g.,
by measuring the temperature increase of the cooling water), we find that it is represented
by the following equation:
(I —T)
v

where ¢}, is the heat transferred in the direction y through the plate per unit time, and A
is the surface area of the plate. The proportionality constant & is defined as the thermal
conductivity of the material of the plate.

Since the temperature profile across the slab is linear, every infinitesimal segment of
the line is represented by the same relationship. Therefore, (10.2.1) can be expressed in
differential form as follows: '

Qy aT

Iy = = —ka, (10.2.2)

Q,=kA (10.2.1)

A

where gy is the heat flux in the y direction, i.e., the rate of heat transfer per unit cross-
sectional area of the plate. The negative sign reflects the fact that heat is always conducted
from a higher to a lower temperature (i.e., T3 < T3 and 47" < 0). Equation (10.2.2) can be
generalized for heat conduction in all three dimensions as follows:

T oT or
Q:I:_ - “k%: Qy - —ka_y: q: = — as (1023)
and in vector notation:
qg=—kVT, : (10.2.4)

where ¢ = gz + gy + ¢z.

Equation (10.2.2), and the corresponding (10.2.3)+(10.2.4), are called the Fourier law
of conduction. This law expresses the phenomenological observation that the heat flux by
conduction is proportional to the negative value of the temperature gradient in the direction
of heat flow.

In (10.2.3}+(10.2.4), by using the same value of k for all three directions of heat flow,
we assumed that the material isisotropic; This assumption is valid for most homogeneous
materials but does not hold for some rystalline structures with preferred orientation or for

‘laminated and composite materials.

" 10.2.1. The Dimensions of Thermal Conductivity

The dimensions of the quantities appearing in (10.2.2) are:

g (heat flux: energy time™! area™!): Q t~! L2,
8T /8y (temperature gradient): T-L~!.
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Therefore, the dimensions of the thermal conductivity k are:
(heat flux) - (temperature gradient)™! = Q t~! L-1 T-1,

“In the SX system, the unit of thermal and ail other kinds of energy is the Joule. Since,
by definition, 1 Js~! =1 W (watt: energy per unit time) the SI units of thermal conductivity
are W m~! K~!. In the metric system, the unit of heat is the calorie, distance is measured
in centimeters and temperature in degrees centigrade. Therefore, the units of &k are: cal
s~! em~! °C~1. The conversion factors between these two kinds of units and also to the
“British™ system unit (BTU) are

1Wm ' K™=2388 x 1073 cal s~ cm™! °C~! = 0.578 BTU h~1 ft~! °F~1,

10.3. ANALOGY BETWEEN MOMENTUM AND HEAT
TRANSFER BY CONDUCTION

As noted in Chapter 1, there is a close analogy between the concept of viscosity (Chapter
3) and that of thermal conductivity: In the case of fluid flow, viscosity is the proportionality
constant between the rate of momentum transfer and the driving force of the velocity gra-
dient. In a similar way, thermal conductivity relates the conduction of heat to the driving.
force of the temperature gradient. This analogy becomes more evident in the case where
the density, p, and specific heat, C;, are constant with i so that we can rewrite (10.2.2) as

follows:
LOT __ k %eGT) - 8(pC,T)

Qy = —K7- = o—0—,
Y 8y  pCp Oy 8y
where k is the thermal conductivity, p the density, C, the specific heat, and o = k/pC,,
the thermal diffusivity of the material.
The corresponding equations are:
a. For momentum flux:

(10.3.1)

O(puz)

Tye = —V 3y (10.3.2)
b. For heat flux: 8(5C,T)
gy = —a—payl—. (10.3.3)

The momentum diffusivity and the thermal diffusivity have the same dimensions, L2
t~1. In the SI system, the units of momentum and thermal diffusivity are m? s~ and in the
metric system cm? s~1.

As will be discussed in Chapter 12, the ratio of the momentum and thermal diffusivities
plays an important role in the convection of heat and is defined as the dimensionless Prand
number: ' '

Cpt

v
P[ = -(—I- = T (10.3.4)
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Table 10.1. Thermal Conductivity of Some Solid Materijals

Material _ Temperature, *C EWm!K!
Aluminum metal 500 222
Alumina (Al;O,) ceramic 500- - 10
Magnesite refractory 200 3.8
(87%MgO, 6.3%Fe,O,, 3%Ca0, 3.7%5i0,) 650 28
" ! 1200 1.9
Silicon carbide refractory 600 18.5
" " 800 16.1
1000 13.8
" " 1200 121
" " 1400 10.9
- Chrome magnesite refractory 200 1.16
" " 650 1.47
1300 173
Insulating brick (high porosity) 200 0.09
" " 760 0.02
Graphite brick 800 53.6
Copper metal ) —263 19000
" " 900 345

Table 10.2. Thermal Conductivity of Some Common Gases
(k, Wm™ K; at 1 atm pressure)

Temnp, Carbon Carbon
'C Hydrogen Air monoxide dioxide
25 0.182 0.027 0.025 0.017
175 0.251 0.037 0.044 0.029
525 0.384 0.058
825 0.464 : 0.072
1060 0.519

1425 0.096
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10.4. VALUES OF THERMAL CONDUCTIVITY

The thermal conductivity of some solid materials at various temperatures is shown in Table
10.1. The conductivity of some common gases is shown in Table 10.2.

The thermal conductivity of materials is affected by temperature, pressure and compo-
sition. As in the case of viscosity, at low to moderate pressures the thermal conductivity
of gases increases with temperature. The reverse behavior is observed with hon-metallic
materials, while metals exhibit a mixed behavior. The conductivities of various metals,
minerals and other materials are shown in Figs. 10.6 [6] and 10.7 [1].

10.5. STEADY-STATE UNIDIRECTIONAL HEAT CONDUCTION

In this section we shall examine the use of the Fourier law of heat conduction for determining
the temperature distribution and the rate of unidirectional heat conduction under steady-state
conditions.

Let us consider an infinitesimal cubical element of volume dz - dy - dz in a material
of density p and specific heat C, (Fig. 10.8). Heat is transferred in and out of the surfaces
dy - dz of the element and also some heat is generated throughout the volume of the element,
e.g., by chemical reaction or electric heating.

At steady state, the thermal energy balance for the control volume element of Fig. 10.8
is stated as follows: ., . >

& heat in by conduction — heat out by conduction
e + heat generation in element = 0.

On the basis of the Fourier law of conduction (see (10.2.2)), the above statement can
be expressed mathematically as
d (, dT
—_— —_— 7= 10.5.1
dy (k dy) +a=0 ( )

where ¢ is the rate of heat generation per unit volume of the material. The above equation
represents the thermal energy balance for steady-state unidirectional conduction. In the
following section, we will examine its application in the solution of some simple heat
conduction problems.

10.5.1. Heat Conduction through a Plane Wall

a. Known boundary conditions: two temperatures. Let us consider the very simple
problem of heat conduction through a plane wall of thickness ¥ and constant thermal
conductivity, k. The temperature at y = 0 is maintained at Ty and at y = Y is Ty, where
To > Ty. In this case, there is no generation of heat (g = 0) and (10.5.1) simplifies to

T

& =" (10.5.2)

The boundary conditions for this second order equation are:

T=Thaty=0,andT =Ty aty=Y.
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By integrating (10.5.2) twice, we obtain

T =0Cs +C’1y,

(10.5.3)

where € and C; are integration constants. Solving for the integration constants on the

basis of the above boundary conditions, we obtain

02=T0 and 01=

—Te

Y
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T =T+ (Ty —To)%.
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The heat flux through the wall can be obtained from the first derivative of the above

temperature distribution:

o= 8L T Ty)

Z - (10.5.5)

Example 10.5.1

A furnace wall is 18 cm thick; the temperature of the inside surface is 550°C and the outside
surface is kept at 30°C. If the thermal conductivity of the wall is 3.0 W m~! K1, calculate
the heat loss per unit surface of furnace wall.

Solution: The required heat loss is equal to the heat flux by conduction through the
wall and is calculated as follows:

= (550 — 30) = 8867 Wm™2 = 2070 cals~! m~?
q?"_O.lS( ) = m™“ = 2070cals™ m™~“.

b. Known boundary conditions: temperature and heat flux. Let us now consider a
similar case of heat conduction through a wall of a furnace where the inside temperature is
known but not the outside one; instead, we know that the heat loss from the outside surface
of the wall is expressed by a given function of the outside temperature. The boundary
conditions in such a case are:

T=Tpaty=0,
and
heat flux through wall = heat loss from outside surface,
ie.,
0, = —k% - "’("i;ﬁ—) W(Ty =T,) at y=Y, (10.5.6)

where Ty is the outside surface temperature, T}, is the temperature of the atmosphere around
the furnace, and % is the heat transfer coefficient for convection from the outside surface to
the environment (heat convection will be discussed in detail in Chapter 12).

On the basis of the above boundary conditions, and by uvsing (10.5.6) to eliminate
the intermediate temperature Ty, the solutions for the integration constants ¢ and Cy of
(10.5.3) are now
Ty —To _ h{Te — Th)

Y = k+hY

Accordingly, the temperature distribution of (10.5.3) is expressed as follows:

Cz =T0, and Cl =

o AT, —T)
T =T+~ ¥ (10.5.7)
or T T "
r=m 4 LTy (10.5.8)

1+ &

e —— = P
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Figure 10.9. Temperature profiles through wall at increasing heat loss by convection ‘from
outside surface,

The temperature profile is shown in Fig. 10.9. It can be seen that as the ratio k/hY decreases,
the outside wall temperature (at ¥ = Y") approaches that of the environment.

Example 10.5.2

The inside wall temperature (7y) of a furnace under design is to be 1500°C. Calculate the
minimum wall thickness (Y") required if the temperature of the outside surface (Zy) is not
to exceed 200°C. The average thermal conductivity of the refractory wall may _be taken as
0.6 W m~! K~1. The environment temperature is 20°C and the heat loss from the outside
surface to the environment is expressed by the following empirical relationship:

q=2.8(Ty - T.)'%,

where 7, is the temperature of the atmosphere around the fumnace, °C; Ty is the outside
temperature of the furnace wall, °C; g is the heat flux, W m—2.

We start by equating the heat flux by conduction through the wall to the given equation
for heat loss by convection to the environment:

k(Ty — Ty)

_ _ 125
% =28(Ty — To) ™.

Substituting numerical values and solving for Y, we calculate

_ 0.6(1500 — 200)

Y =
2.8(200 — 20125

= (.42 m.

In similar problems, it may be required to determine the outside temperature for a
specified wall thickness. In such cases, the heat balance equation must be solved by trial
and error.

10.5.2. Heat Conduction in a Sphere

Let us consider a spherical particle of radius R and thermal conductivity & (Fig. 10.10).
Heat is generated within the particle, e.g., by induction, at the rate of ¢ watts per unit volume
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Figure 10.10. Temperature profile in a sphere, with internal heat generation.

of particle. If the outside surface is maintained at a constant temperature 7, it is required
to find the temperature distribution and maximum temperature within the sphere.

To solve this problem, we select as the control volume a spherical shell of thickness dr,
as illustrated in Fig. 10.10. A heat balance over this shell yields the following differential

equation:
d (41rr2 kd—T-) + ¢{dnr? dr) =0
dr
. 1 d dT |
—_— — 2 — 7 =
=z g (r kdfr) +g=0. (10.5.9)

By integrating this equation twice, we obtain the following algebraic equation:

e
T—c S _T

- (10.5.10)

The integration constants C; and C; are evaluated from the boundary conditions, one of
which was given as T' = T at r = R. Also, by considering that the temperature must have
a finite value at all values of », we deduce that ¢; = 0 (otherwise, 7' would be infinite
at r = 0). Therefore, the solution of the differential heat balance yields the following
temperature profile in the sphere:

T=T+ Ing(Rz — )., (10.5.11)
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10.5.3. Heat Conduction in a Hollow Cylinder

A common problem in heat transfer is the conduction of heat through the wall of a hollow
cylinder of outer diameter Fg and inner diameter R;. To establish the temperature profile
across the wall of the cylinder, we select as the control volume a cylindrical shell of radius
r, thickness dr and unit length (Fig. 10.11). In the absence of heat generation and for steady
state conditions, the differential heat balance in the control volume is .

d
e (211'7' ?) =0 for R; <7 < Hp. (10.5.12)

The above equation is integrated twice to yield
| T=Cy +Clar. (10.5.13)
The integration constants are evaluated from the boundary conditions which are given as:
T=T,atr=R; and T =T, at r = Ry.

On the basis of these boundary conditions, the temperature profile across the wall of the
cylinder is expressed as follows:
Tilnfe T &
T= 7
In &

(10.5.14)
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The rate of heat flow per length L of the cylinder (dimensions: Q t~1) is expressed by
the following equation:

20 Lk(T; — Tp)
In 32

10.6. HEAT CONDUCTION IN COMPOSITE MEDIA

In this section, we shall discuss the solution of simple problems of heat conduction through
composite walls.

10.6.1. Planar Geometry

Let us consider a composite wall of thickness. L, consisting of three materials arranged in
parallel layers (Fig. 10.12). The thickness of the three layers is denoted by Y7, Y5, and
Y, respectively and their corresponding thermal conductivities are k;, ko, and k3. The
temperature in each layer will be denoted by the variables 77, 7%, and T3, respectively.

- The inside surface, corresponding to y = 0, is maintained at temperature Ty and the
outside surface, corresponding to ¥y = L (I = Y] + Y5 + Y3), is losing heat by convection
to the atmosphere which is at temperature T,;. It is required to develop the equations
describing the temperature profile within the system and the heat ﬂux across the composite
wall of thickness L.

We proceed by establishing individual control volumes in layers 1, 2, and 3. The
differential equations describing the heat flow are

2

layer 1: & =0, 0<y<Y, (10.6.1)

l Lo vi<y<

ayer 2: Fr = 1 <y <Ys, (10.6.2)
d*Ty

layer 3: =y =0, Yo <y<Ya. (10.6.3)

Six boundary conditions are necessary for the solution of the above equations. The first
two conditions are derived from the physical statement that the temperature is specified at
y = 0, and that there is convective heat transfer at y = L:

Ty=Ty at y =0, (10.6.4)

—kaa =h(T3—T,)aty=L (L=Y1+Yz2+Yz) (10.6.5)
The remaining four boundary conditions are obtained by reasoning that both the temperature
and the heat flux must be continucus functions of distance throughout the composite wall.
Therefore, the temperatures and the fluxes in two adjacent phases must be equal at the
interface. It should be noted that these conditions are observed only if there is no contact
resistance; however, allowance can be made for any contact resistance by introducing into
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additional phase of zero thickness. For negligible contact resistance, we

the formulation an

(10.6.6)

n,

"=1 aty

(10.6.7)

Y+ 71,

T, =T; at y

(10.6.8)

at y=Yl)

dls
ko2
2 dy

an _
dy_

k

(10.6.9)

3 aty=Y, +Ys.

dfy _, 413
dy — dy

ko
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The above differential equations and boundary conditions present a complete statement
of the problem. An obvious method of solution would be to integrate each of the differential
equations and evaluate the six integration constants by substituting the boundary conditions.
However, in this case, there is an easier approach: It is obvious that, at steady state, the heat
flux through the three layers of the wall and to the atmosphere, g, will be constant and the
temperature profile in each layer linear. Therefore, if we designate the interface temperatures
between successive layers of insulation as T3 ;, and 7% ;, and the outside surface temperature
T3,;, we may write the following system of four equations:
1To Y1T1,: _ k2T1,:Y2T2,1 _ ksﬁ'TaT:*-' = h(Ts; — T.). (10.6.10):

These four equations have four unknowns, 71 ;, T3, T3,i, and gy.. The intermediate
temperatures at the interfaces (73 ;, T, and T3 ;) are readily eliminated algebraically to
yield the following equation:

Qy=k

- To-T (10.6.11)
PTEYESEH T
Equation (10.6.11) provides a relationship between the heat flux and the terminal tem-
peratures. Once g, is known, the individual temperatures at the interfaces (71 ;, T2, and
T3,:) are readily obtained by substitution of g, into (10.6.10).
The numerator in (10.6.11) may be regarded as the overall “driving force” for heat
transfer, while the denominator represents the overall resistance to heat flow; the quantities

i a3 1
k1’ k' ks R

appearing in the denominator may be considered as the individual resistances to the transport
of heat; this equation is clearly analogous to Ohm’s law for resistances in series, with the
heat flux corresponding to current and the temperature difference to voltage difference.

Equation (10.6.11) may be generalized for the case of a composuc medium consisting
of n layers, as follows:

E-xample 10.7.1

A furnace wall (Fig. 10.13) consists of three layers, a 20-cm inner layer of refractory (k =
3.8 Wm~! K~1), a 9-cm intermediate layer of insulating brick (k =0.34 Wm~! K1) anda
1-cm steel shell (k =38 W m~! K—1). The heat losses from the steel plate to the atmosphere
can be represented by a combined heat transfer coefficient for convection {Chapter 12) and
radiation (Chapter 13) of 142 W m~2 K~!. If the inside fumace temperature is 1350°C
and the atmospheric temperature, 7, = 18°C, calculate the heat loss per unit surface area
and the outside temperature of the steel plate, T,,.
To calculate the net heat flow, we substitute the numerical values into (10.6.11):

1350 —18 1332

9y = 0,08 0.01 1
3 3 + =5 631 T 38 + 143 0.0526 4- 0.2647 4+ 0.00026 -+ 0.0704

=3.433kWm?.
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© Steel plae

—qle—

T,=18°C T,;=1350 °C

N

Insulated Refractory
brick

Figure 10.13. Heat conduction through a fumace wall,

It can be seen that the steel plate contributes very little to the overall resistance to the
heat flow. The outside temperature of the steel plate, T, is calculated by equating the heat
flow to the losses from the steel plate:

3433
= s —Tu), Ty = —— + 18 =259.8°C.
¢y = h(T ) 14-2+ _ 259.8°C
The calculated outside temperature would be considered too high for most practical ap-
plications and, therefore, a thicker insulating layer, or better insulating material, would be
required.

10.6.2. Cylindrical Geometry

Analogous considerations to the plane wall are applied to problems involving composite
media of a cylindrical or spherical geometry. We have already presented the differential
equation describing the flow of heat across the thickness of a cylindrical shell (see (10.5.15)).
In the case of a number of coaxial cylindrical shells, this equation will apply for each layer
while the expression of continuity of temperature and heat flux at the interfaces will provide
the boundary conditions. The total heat flow for a length L of a multi-layered cylindrical
shell, which loses heat to the atmosphere by convection, can be generalized as follows:

Q= 271‘L(T0 - Ta) (10.6.13)
n In{ it
_Z ki + h:‘n
i=1

where Tj is the inside surface temperature, 7, is the atmospheric temperature, 7; is the
radius of layer j, h is the heat transfer coefficient for convection, and 7, is the outside
radius of the composite cylinder.

Example 10.7.2

Molten lead at 316°C is pumped through a 5-cm internal diameter x 0.32-cm thick steel
pipe. The pipe is insulated by a 3-cm thick fiberglass layer (k = 0.08 W m~! K~!) and,
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over that, by a 2.5-cm thick glass-wool sleeve (k = 0.11 W m~! K~!). If the heat transfer

coefficient from the outer surface of the glass-wool sleeve to the atmosphere is 12 W m~2

K1, calculate the heat loss per meter of pipe length (atmospheric temperature= 20°C).
Solution: By substituting the above numerical values in (10.6.13), we obtain:

2 x 3.142 x.1 x (316 ~ 20)
(58] | ()

1
0.08 - T i1 T 12x8a2
=149.97 W per m of pipe length.

Q=
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ELEVEN

Unsteady State Conduction of Heat

In Chapter 10, we introduced the concept of thermal conductivity and used the Fourier law
to solve simple problems of steady-state conduction in one direction. In the first part of
this chapter, a similar approach will be used to develop the differential equations for three-
dimensional unsteady-state conduction. The analytical and numerical methods available for
the solution of these equations will be described in the second part.

11.1. THE DIFFERENTIAL EQUATIONS OF HEAT CONDUCTION

To develop the differential energy of heat conduction, we will use an infinitesimal cubical
element of volume dz - dy - dz in a material of density p and specific heat Cp (Fig. 11.1).
Heat is transferred through the element by conduction; also, some heat may be generated
within the element, e.g., by resistance or induction heating or by a transformation reaction.
The thermal energy balance for this element is stated as follows:

rate of heat accumulation in element
= heat transfer rate in — heat transfer rate out
- rate of heat generation in element.

On the basis of the Fourier law of conduction (see (10.2.2)), this statement can be
expressed mathematically for three-dimensional conduction as follows (Fig. 11.1):

8(pC,T) | | or @) dyd
—ar wld= k() thg) |9

[ ar oT
+ |-k (——) +k (—) dz dz
| \%/y T\OY/ ] (11.1.1)
d o - :
. { 9L A= dz d
+ kz(az)z+k (az)z+dz_ v
+ ¢dxdydz,

where g is the rate of heat generation per unit volume of the material.

mathematical definition

(). ().
oz cide oz /.,

123

8

ar
5-1-:. (k: 'EB') dI.

However, by

(11.1.2)
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!
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ar
-(kE): ——te=a, at —— '(kgrii)ﬂdx
'
A

N

-(k%): '(k%)g

Figure 11.1. Heat balance in a cubical element of volume.

By substituting from the above equation and from the equivalent expressions for ¢ and z in
(11.1.1) and eliminating redundant terms, we obtain

a(pc,,T)_g( _qg) 8 (, 8T\ 8 oT\ .
5t~ B2 ko 52 +8y ky By +az k:.az +4g. (11.1.3)

Most materials are isefropic in terms of heat conduction, i.e.,, k: = ky = k, = k. Also,

if the density, p, and the specific heat, C,, of the material are not strongly temperature-
dependent, (11.1.3) can be simplified as follows:

or o oT g oT a aT .
A AC A AC IR .

and in vector notation a7
pCpE = V(kVT)+ 4. (11.1.5)

If the change of thermal conductivity with =, ¥, and 2z may also be assumed to be
negligible, (11.1.4) and (11.1.5) can be simplified further:

2 2 2 :
% =a (g% + %—E@ %) p—g,;, (11.1.6)
and in vector notation oT . ;
e aVT + oGy’ (11.1.7)
where « is the t.hérmal diffusivity:
o= ;g;. (11.1.8)

As noted in Chapter 10, the thermal diffusivity has the same dimensions, 12 t~1 as
the momentum diffusivity (or kinematic viscosity, v) which was discussed in Chapter 3.
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Point (x, y, 2) or (r, z, 8)

Figure 11.2, Cylindrical coordinates.

Point (x,y,7) or (r, 8, ¢)

x

Figure 11.3. Spherical coordinates.

For unsteady state conduction, « represents the capacity of a material to transport heat by
conduction better than k, because the product pC, accounts for the amount of transferred
heat that is retained in the material per degree of temperature increase.

In cylindrical and spherical bodies, it is convenient to use the corresponding forms of
the above equations in cylindrical (Fig. 11.2) and spherical (Fig. 11.3) coordinates. The
considerations are the same as for the linear coordinate system, with the geometrical com-
plication that the cross-sectional area through which heat is conducted changes with radial-
distance.

For a cylindrical system, the spatial coordinates are the radial distance from the axis of
- the cylinder, r, the angle # around a section of the cylinder, and the axial distance 2z along
the length of the cylinder. These coordinates are related to the linear coordinates z, y, and
z as follows (Fig. 11.2):

z=r1cosf, y=rsinf, z=-=z. (11.1.9)



I26 N L THEMELIS-

By substituting the cylindrical coordinates in (11.1.4) we obtain

or 190 oT 1 3 or 0 aT .
g = o () e ()t 55 (ba) t6 (L

and for constant & with location -

or 10 (8T, 18T &T], g
ot [T ar (T E;) +;2_ 502 + 3z2] + 2C,’ (11.1.11)
) or 8T 18T  10°T 8T
= 1 1 ¢
at (81'2 + T or + r2 Bg2 + 3z2) + oGy’ (11.1.12)

Similarly, the spherical system coordinates are related to z, y, and z as follows (Fig. 11.3):
z=r7sinfcos¢p, y=rsinfsing, z=rcoséh. (11.1.3)
The equation which corresponds to (11.1.4) is

8r 1 8 o 8T 1 a aT
pC"E T2 Or (k’r E) T 2z 72 5in® ¢ o8 (k )

r?sin ¢ 8¢ in 9e) T D
and for constant & with location

M _G[L0(aEY, 3BT 10 oy i
8~ |2 or or r2sin? ¢ 802  r2sin¢ 8¢ a¢ pCp’

(11.1.15)

(11.1.14)

or

or _ (¥#T. 29T 1 T 19T 1 3T+
at ~ *\3r "7 or r2sin?¢ 802 72 8¢? r2tang 8¢

(11 1.16)

The above equations for unsteady state conduction are of first order with respect to
time and of second-order with respect to the spatial coordinates. To sclve them, we need
one initial condition for time (i.e., the temperature distribution at ¢ = 0) and two boundary
conditions for each spatial variable. For example, for unidirectional conduction we need
one initial condition and two boundary conditions, while the equivalent expression for an
T, Y, z system would require 3 x 2 = 6 boundary conditions. As in the case of steady-state
conduction, which we discussed in Chapter 10, the boundary conditions may be specified
in several ways:

a. The temperature may be specified at the boundary surfaces; depending on
the nature of the problem, these values of T' may be constant or have a
specified relationship to time.

b. The heat flux, i.c., the temperature gradient times the thermal conductivity,
may be specified at one or more of the boundary surfaces; examples of this
situation were given in Chapter 10. In some problems, such heat fluxes may
have a specified relationship to time and temperature.

-
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Figure 11.4. Heat conduction in a composite sphere.
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Figure 11.5. Numerical values of the error functions,

c. In the case of composite media, the continuity of temperature and heat flux
are generally specified at the phase boundaries. For example, in the case of
the composite sphere of Fig. 11.4, the boundary conditions at the interface
between the two mateérials would be
71 =T, at r = Ry; klﬁ =k2% at r = Ry, (11.1.17)
or or _
where R, is the radius of the interface between the two materials.

11.2. ANALYTICAL METHODS OF SOLVING THE CONDUCTION EQUATIONS

Differential equations can be solved either by mathematical analysis or by numerical meth-
ods. An example of the analytical methods is presented in the following section.

11.2.1. Solution of a Particular Form for a Semi-Infinite Solid

One way to solve a differential equation is by finding a mathematical function that satisfies
the equation and its boundary conditions. As an example, let us consider the differential
equation for unsteady-state conduction through a solid in the direction y (see (11.1.6)):

or T
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It has been found that one of the functions that can be a general solution of this equation is
as follows:

T=A+ Berfc

y
/! _ (11.2.2)

where A and B are constants ard erfc[f(y)] is called the complementary error function of

f(y). Error function erf[f(y)] and the complementary error function-of f(y) are defined
mathematically as follows:

vl
e = i eCz
flf ()] = —= of &, (11.2.3)
erel ) = 1 -ertlf )] = o [ &g (11.24)

flw)

where ( is a transform variable.

Plots of the values of erf]f(y)] and erfc[f(y)] against f(y) are presented in Fig. 11.5.
It can be shown mathematically that the error functions obey the following relationships:

erf(0} = 0, erfe(0) = 1, erf(oo) =1, erfc(oo) =0, erf(—oo0) = —~1, erfe(—~o0) =2,
(11.2.5)

ed[—f(y)] = erf[f ()], erfe[—f(y)] =1 +erf[f(y)]. (11.2.6)

Error functions can be differentiated by using the Leibnitz [1] rule for differentiating
integrals:

and

faly)

9 g0 —Bw_ 9 -

5 | €€ d= S In@Ie Y - L (A@] e AW, (11.27)
fly)

Let us now examine whether {11.2.2) is indeed a solution of the differential (11.2.1).-
By differentiating (11.2.2) with respect to y and applying the Leibnitz rule, we obtain:

A+ Bertf — |= viitat - — ¥ /1=t (11.2.8
By [ ° %..V ] S VE (2\/& ¢ ot ( )
Therefore, the second derivative with reépect to y is
32 3 B 2 By 2
- -y fhat) _ _ Fd -y ot
e [A+ Berfe = \/_] [ —e ] TSR (e. ) .

(11.2.9)

Finally, by differentiating (11.2.2) with respect to ¢ and applying the Leibnitz rule, we
obtain:

8

ot

¥ —_ By ~y1jdai
[A+Bcrfc \/E] = gl /2g0E ¢ y /e, (11.2.10)
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Comparison of the right-hand sides of (11.2.9) and (11.2.10) shows that

2 y i 'y
— |A+ Berfc ——=| = a—— | A+ Berfc —— 11.2.1
at[ e 02 at] aayz[ + Be 02 at]’ { 1)
which proves that the function
A+ Berfc —2

2vV ol

is a solution of the differential (11.2.1).

Example 11.2.1

In unsteady-state heat conduction problems, a semi-infinite solid is considered to be one of
such thickness that changes in temperature at one side do not reach the other side, within
the time reference of the problem. Let us consider such a solid of width or thickness y
extending from

0<y< oo,

which is initially at temperature T;. At time ¢ = 0, the surface represented by the y = 0
plane is suddenly brought up to the temperature 7. It is required to develop an analytical
expression for the temperature profiles within the solid, as a function of time.

The thermal energy balance is the same as (11.2.1):

orT 0T
E = Cla—yz. (1121)
The boundary conditions were stated as follows:
T=T; aty>0and t=0, (11.2.12)
T=T, aay=0and?>0, (11.2.13)
T—T;aty—>ocoandt>0. (11.2.14)

The last boundary condition expresses the fact that, for a certain period of time, the tem-
perature at an infinite value of ¥ may be considered to remain at its initial value. On the
basis of our earlier discussion, let us examine whether an equation of the form

y
T = A+ Berfc ——= 11.2.2
¢ 02 o ( )

satisfies (11.2.1) and the boundary conditions expressed by (11.2.12)(11.2.14).

From the boundary condition 11.2.14 and the stated fact that erfc{oo) = 0 (see (11.2.5)),
it is concluded that A = T;. Also, by setting A = T and ¢ = 0, it can be seen that
since erfc(oo) = 0, (11.2.2) also satisfies the boundary condition of (11.2.12). Finally,
since erfc(0) = 1, the remaining boundary condition (see (11.2.13)) can be met by setting
B =T, — T;. Therefore, the required solution is:

¥ :
T -1, = (T, — T;) erf . 11.2.15
: ( Je CZ\/_ at ( )
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.7,/ T T,

Figure 11.6. Temperature distribution in a semi-infinite plate.

This equation is presented graphically in Fig. 11.6, in the form of the dimensionless tem-

perature ratio of (T' — T;)/(T, — T;) against y, for different values of the group 2{at)}/2.
In most heat conduction problems, it is necessary to calculate not only the temper-

ature distribution in a body but also the heat flux through it. In the present problem of

heat conduction in the ¥ direction, the heat flux is expressed by the Fourier equation for
conduction:
or

= =k—. (i11.2.
Qy 3y | (11.2.186)
By substituting for 7' from (11.2.15) and using the expression for the first derivative of
erfc[f(y)] presented in (11.2.8), we obtain

K(T, — Ti)e~¥" /et
gy =+ ( \/'135 . (11.2.17)

Therefore, the heat flux at the surface of the solid, i.e, aty =0, is

k(T_, - T,-)
-0 = ————. 11.2.18
=0 =~ _— (11.2.18)

It should be noted that the above equation predicts an infinite heat flux at the exact
instant of ¢ = 0. 1t is, of course, impossible to raise the temperature of the surface suddenly
by a step value. Let us consider the more practical case of the average heat flux over a
finite interval, ¢.; the average heat flux during this time period is then expressed as follows:

t
= R(T,—Ts
2=T) gy
o [ = _ 2T -T) ()7 _2m(T, -T) (11.2.19)
BETT T te - Vet B

Example 11.2.2

Molten metal is poured rapidly into a 3-m diameter by 4-m high ladle which is filled to a
depth of 2.5 m. If the refractory lining of the ladle (0.3-m thickness) was initially preheated
by gas firing to a uniform temperature of 600°C (T,) and the initial metal temperature is
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1600°C (T3), estimate the heat loss due to conduction into the ladle walls, during the first
15 minutes after the ladle was filled.

Data:
Refractory wall: ,
E=12Wm K1 =0287cal s~ m~! K1
p=2723 kg m~3
Cp=0.3cal g~! K!
a=31%x10"" m? 51!
Molten metal:
p =T050 kg m~3
Cp=0.12cal g71 K!
As a first approximation, let us assume that a) the ladle walls act as a semi-infinite
solid; b) heat losses from the covered ladle occur only by conduction to the wall across the

metal/refractory interface; c) the thermal properties of the system are nearly constant.

On the basis of these assumptions, the problem is formulated as follows:
a7 a?T
— = g— 11.2.1
ot~ oy (11.2.1)

and the boundary conditions are
T =T, (600°C)att =0, T — Ty asy — oo, T =T;(1600°C)aty = 0.

It should be noted that the last equation introduces another simplifying assumption, i.e.,
the temperature of the molten steel will remain at 1600°C as heat is conducted into the
refractory. The validity of this assumption will be examined later. The above system of
equations was solved in Example 11.2.1. For the boundary conditions of this problem, the
corresponding temperature distribution is

Y
(i~ Tu)ere o7 (11:220)

The comesponding average heat flux over the time interval 3. was shown earlier (see
(11.2.19)) to be
: - 2k(T; — Toy)
WE T mat,

The total amount of heat transferred from the metal to the ladle wall over the time

period . is obtained by multiplying the average heat flux by the time interval and the area
of the liquid/wall. interface:

_ 2k(T; — Tw)
Qrotal =Tytedi = ~ Jrot.

\1/2
=2k(T; — T) (t_e) (gd? + ﬂdlhm)

(11.2.21)

te Ai

(g4

=2 x 0.287 x 1000 X 900 1"2><(3><32+ x3><25)
e Xy T x3.1x10-7 4 m '

=543500 keal,
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where i, is the stated period of 15 minutes (900 seconds), d; is the inside diameter of the
ladle, and A, is the depth of the metal bath.
The total heat capacity of the melt in the ladle per degree K is

pCp x volume of metal = 7050 x 0.12 x 17.67 = 14948 kcal K.

Therefore, the corresponding decrease in metal temperature during the first 900 seconds is
543500/14948 =358 K. It fq!l_q_ws that the initial assumption of a nearly constant temperature
at the metallrefractory ‘interfacé was reasonabie.
"Let us now also examin€ the validity of the assumption that the ladle wall acts as
a semi-infinite solid. As stated earlier, this assumption is reasonable provided that the
region of the temperature gradient is smaller than the characteristic length of the system
in which conduction occurs (in this case, the thickness of the refractory wall). We shall
define, somewhat arbitrarily, the heat penetration distance as the point which has increased
in temperature by less than 5% of the initial metal/wall surface temperature difference
(1600-600°C). Thus, from (11.2.20), we are seeking the value of y for which

erfc =0.05.

2\/_

From Fig. 11.5, or any tabulation of error functions, this value of erfc[f(y)] corresponds to
F(y) = y/[2(ct.)*/?] = 1.4. Therefore, y is calculated to be 0.046 m.

It can be seen that this depth of penetration in the 15-min interval is small in comparison
to the overall thickness of the refractory wall (0.3 m); this justifies the assumption of the
refractory wall as a semi-infinite medium. Also, the fact that the distance travelled by the
heat in fifteen minutes is very small in comparison to the diameter of the ladle justifies the
treatment of the problem in linear rather than in cylindrical coordinates.

11.2.2. Analytical Solations Available in Graphical Form

The technique of seeking a solution of the differential equation for unsteady-state conduction
in the form of an error function is appropriate only for semi-infinite media, Other forms of
analytical solutions and mathematical techniques are used for bodies of finite dimensions, as
described in detail in the Handbook of Heat Transfer Fundamentals [2] and other specialist
books on the subject of heat transfer {3.4]. |

It is important to know that for many cases of practical interest, the equations resulting
from such solutions are available in graphical form. Therefore, it is not necessary for one to
be a mathematician in order to solve relatively complex problems of heat conduction. Such
graphical solutions are included in engineering handbooks and textbooks and are usually
presented in terms of the following dimensionless parameters:

o Temperature is expressed relatively to a convenient reference level and is made
dimensionless by dividing by the maximum possible temperature difference in
the system. Thus, in Example 11.2.1, the dimensionless temperature would be
expressed as

T-T;

Ta - Tl' )
It can be seen that, expressed in this way, the dimensionless temperature at any
point and time has a value between zero and 1.
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e Time is made dimensionless by multiplying it by the thermal diffusivity of the
medium and dividing by the square of a characteristic length, L, usually taken to
be the distance from the center of the body (e.g., radius R of a sphere, half width
L of a slab). This grouping is called the Fourier number:

[s4

.F0= ﬁ

(11.2.22)

It should be noted that the Fourier number is of the same form as the inverse of

the square of the group
Y

N
which we encountered in the error function equations in §11.2.1.
e The effect of heat convection between a fluid and the surface of a body is accounted
for by means of the Biot number which represents the ratio of fluid thermal
resistance (convection) to the internal thermal resistance of the fluid (conduction)‘:

. h hL

where £ is the heat transfer coefficient for convection to be discussed in Chapter
12.

o The location of any particular point, z,¥, 2, in the conducting medium is repre-
sented by dimensionless ratios /L, y/L, and z/L.

There are many such solutions of a graphical form in the literature, Amongst the
earliest published plots were the Gurney—Lurie charts [5] which are still included in the
Chemical Engineers’ Handbook [6]. However, their usefulness is limited to Fourier number
values over 0.1. Therefore, Geiger and Poirier [7] recommended the use of the plots shown
in Figs. 11.7-11.9 for the most common situations where the geometry is well defined: Heat
conduction through a large plate, radial conduction through a long cylinder and conduction
through a sphere.

Specialist handbooks, such as that by Rohsenow et al. [2], present similar plots for
other situations, such-as the heating or cooling of one side of a thick plate while the other
side is insulated; the temperature response of reacting solids {e.g., in the presence of thermal
decomposition); the two-phase problem of a melting or ablating solid, and other-situations
of interest in materials processing.

Example 11.2.3

An 8-cm diameter metal sphere is heated to the uniform temperature of 450°C. The sphere
is then subjected to cooling by a forced air stream at 25°C. If the heat transfer coefficient
from air to sphere is 40 W m~2 K~ and the thermal properties of the metal are

Thermal conductivity: k = 15.6 W m~! K1,
Specific heat: C, = 460 J kg~! K1,
Density: p = 7600 kg m™3.
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Figure 11.7. Temperature profiles in a large plate of thickness 2L initially at T}, subjected to
convective heat transfer from both sides at temperature T [7).
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Figure 11.8. Temperature profiles in a long cylinder of diameter 2R iﬁitially at T}, subjected
to convective heat transfer at temperature T¢ [7). '

Calculate: a) the time that it takes for the center of the sphere to reach 150°C; b) the time
that it will take to cool the center to 150°C, if the sphere is quenched in oil (h=500 W m~2
K1) instead of air; c) the surface temperature of the sphere at time b. :

First, we calculate the thermal diffusivity of the metal:

k 15.6

= =446 x 107 m?s™1.
pC, ~ 700 x dgo A8 x107ms

o =

a. The Biot number is
h Rfk =40 x 0.04/15.6 = 0.103,

and the given temperature of 150°C is expressed in dimensionless form:

15025

0= /o—25—

0.29.
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Figure 11.9. Temperature profiles in a sphere of diameter 2R initially at T;, subjected to
convective heat transfer at temperature T [7].
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By referring to the plot for the temperature profiles in the center of a sphere (Fig.
11.9a), we find that at the dimensionless temperature of 0.29 and the Biot number of 0.103,
the corresponding Fourier number is approximately 4.5. Thercforc, the required time for
the center of the sphere to be cooled to 150°C is

__FoR®  4.5x0.042
T a  445x10-

= 1618 seconds.

b. If the sphere is quenched in oil, the heat transfer coefficient for convection is 500
W m~! K~1. Therefore, the Biot number is now 1.28. Referring again to Fig. 11.9a, we
find that the Fourier number has now decreased to 0.7 and, therefore, the calculated time
for the center of the sphere to reach 150°C is about 250 seconds.

c. To determine the corresponding temperature at the surface of the sphere, 250 seconds
after initiating quenching, we use Fig. 11.9d to find that for Bi = 1.28 and Fo = 0.7 the
dimensionless temperature at the surface is approximately 0.18. Therefore,

T —25

from which we calculate T to be 102°C.

11.3. NUMERICAL TECHNIQUES AND THE USE OF COMPUTERS

The rapid development and easy availability of computers has, amongst many other things,
simplified greatly the solution of differential equations. While, in the past, it was necessary
either to develop analytical solutions of such equations or go through very laborious “man-
val” calculations, computers and commercial software programs have facilitated enormously
the use of numerical techniques for solving differential equations.

There are many excellent textbooks on the use of numerical techniques. Here we will
present some introductory concepts using as an example the differential equation describing
the conduction of heat under non-steady conditions.

Let us consider the case of a metal plate of thickness L which is at the initial uniform
temperature of ;. At time 2 = 0, one side of the plate is suddenly heated, e.g., by contact
with an electrically heated surface, to a higher temperature 7,. With time, heat will be
conducted through the plate, towards the other side of it. We need to determine how the
temperature profiles through the plate will change with time.

In this case, there is no heat generation within the plate and the differential equation
for heat conduction through the plate is expressed as follows:

oT T
—_— <y < .3.
Frials 3y for 0<y<L. (11.3.1)

The boundary conditions for this equation are:

T=T;, aa0<y<Landt=0, (11.3.2a}
T=T,aty=0andi>0, {11.3.2b)
T=T; at y— o0. E (11.3.2¢)
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A worthwhile first step in all numerical calculations is to express the equations in
dimensionless form. In order to do so, let us define the following dimensionless parameters.
Dimensionless temperature:

T-T;
6= >,
Ta - T,
Dimensionless length:
p=12
T
Dimensionless time:
o
T = ?.

It can be seen that the temperature was made dimensionless by using as a reference point
the initial uniform temperature of the plate, T3, and dividing by the maximum temperature
difference in the system. By using the above dimensionless parameters, the differential
equation (11.3.1) and its boundary conditions are written as follows:

a6 8%

5 = 55 (11.3.3)

for0=0atr=0and0<g<;8=1atf=0and7T>0;8=0at=coandall.

The advantage of the dimensionless representation is that the final solution is more
general; also, the numerical range of the dimensionless variables is restricted to 0 < 8 < 1
and 0 £ 8 £ 1, so that any computational errors are more easily detected.

Let us now construct a two-dimensional grid (Fig. 11.10), the grid points of which are
separated by distances AS and At which represent, in dimensionless form, a finite space
difference (e.g., 0.1 cm) and a finite time difference (to be discussed later) of our choice on
the space and time axes, respectively.

It can be shown, by applying the calculus of finite differences, that the second differ-
ential term appearing in (11.3.3) can be expressed in terms of the temperatures at adjacent
_ grid points and the. finite space difference between these points, as follows:

(329) _ (Omt1 =) = (O = Bm—1) _ Bmps — 20m + O (11.3.4)

ap? (AR (AB)? ’

| 329)
(@).

represents the second derivative of temperature with respect to distance through the plate,
at the grid point mn, and &,,_1, &, and 8,,41 are the dimensionless temperatures at grid
points m — 1, m, and m + 1, respectively (Fig. 11.10),

Similarly, the time derivative at point m is expressed as

where the term

88 0, — 0

—_—= 11.3.5
or Ar ( )

where 87, is the temperature at point /n after lapse of one time interval Ar.
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Figure 11.10. Example of two-dimensional time-space grid.

Substituting from (11.3.4) and (11.3.5} in (11.3.3), we obtain

82 — O Omy1 — 20m + Oy
At (AB)? '

(11.3.6)

and therefore Ar
9;1 = Gm + W (9m+1 - 261-,1, + gm—l) . (1137)

As illustrated in Fig. 11.10, (1 1.33) relates the value of the temperature at a given grid
point, at time 7 -+ A7, to the values of temperature at the same and adjacent grid points,
at time 7. Therefore, if the initial temperature distribution over the whole space domain is
known, the temperatures at successive time steps can be evaluated by the repeated application
of (11.3.7). :

It should be noted that the finite difference representation of differential equations is
only approximate and that the accuracy of the results will depend on the number of the grid -
subdivisions used; in general, the finer the mesh size, the more accurate will be the resnlts,
but at the same time, the computing time will increase accordingly. The grid size need not
be the same over the whole space domain: A finer grid can be used in the areas where the
gradients of temperature, or other driving force, are expected to be greater as, for example,
in boundary layers.
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It can be shown [8] that in order to satisfy the criteria for convergence, the values of
the finite differences for space and time must be selected so that the following ratio is less

than 1/2:
AT 1

aFF <3 (11.3.8)

Inspection of (11.3.7) shows that the actual relationship between &, and 8, depends on the -
numerical value chosen for this ratio; thus, for

Ar _1_
(Ag)? 4.
we have 1
6;1. = Z [9m+1 + 29m -+ Bm_]_] . (1139)

From the definition of dimensionless time and distance, for this particular ratio of
Ar/{AB)? the real time increment is related to the real distance increment as follows:

_ATLE (AR L2 _ (Ay)® L® _ (Ayy
M= =T T T o e (11:3.10)

The use of the above numerical technique is illustrated in the following example.

Example 11.3.1

Compute the change in temperature profile with time, after a “semi-infinite” plate (@ =
0.0128 cm? s™1) of initial temperature T; is subjected to heating from one side at the
temperature 7,. This problem is represented by (11.3.1) and the boundary conditions by
(11.3.2a}(11.3.2¢c). To solve this equation numerically, we first must decide on the number
of grid points that will represent the space and time domains. First, with regard to the
space domain, let us consider a thickness of the plate of 0.4 cm. We will estimate the time
period for which the temperature at I = 0.4 has not yet been affected by the heating of the
outside surface of the plate (i.e., while the plate can be considered to be semi-infinite). For
simplicity, let us select a length grid of 4 subdivisions, i.e., at every 0.1 cm.

The corresponding size of the allowable time interval in the time domain is then calcu-
lated by means of (11.3.10) to be 0.2 s. Let us assign five grid points to the space domain
of Fig. 11.10. The first grid point represents the outside surface of the plane (ie, y = 0
and g = 0), while the fifth represents the location ¥ = 0.4 cm. By selecting (see (11.3.8))

AT 1

(Ag2 4

our working equation becomes (11.3.9):

6 = i Bop1 + 20 + O] (11.3.9)
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A B C D E F G
1 Example 11.3.1.
2 Grid points:
3 Gem O0tlem 0.2c¢cm 0.3cm 0.4 ca
; Time step n-1 B mtl ot+2 2+l
6 1 1 0 0 0 0
7 2 1 0.250 0. 000 0.000 0
8 3 1 0.375 0.063 0,000 [
g ] 1 0. 453 0. 125 0.016 0
10 L] 1 0. 508 0. 180 0.039 0
11 b 1 0. 549 0. 221 0.064 0
12 7 1 0. 581 0. 267 0.089 0
13 8 1 0. 607 0. 301 0.111 0
14 9 1 0.629 0. 330 0.131 0
15 10 1 0. 647 0. 355 0.148 0
45 40 1 0. 749 0. 499 0.249 0

1/4%(C6+2%D6+E6)

Figure 11.11. Use of the Lotus 1-2-3 spreadsheet program to solve a second-order differential
equation. ’

The boundary conditions of this problem specify that at the first grid point, y = 0
{m — 1) and at any time £ > 0, the dimensionless temperature has the value of 1; similarly,
for a certain period after ¢ = 0, the dimensionless temperature at the last grid point, y = 0.4,
remains constant with time and has the value of 0. At the end of the first time interval, the
temperature at m — 1 will be equal to 1 and zero at all other y points. We must now use
(11.3.9) to evaluate the temperature distribution after the second time step and repeat the
same calculation for successive time steps, until we have developed a series of temperature
profiles as a function of 1.

This problem can be expressed in BASICA or FORTRAN and solved by computer. It
can also be solved by using a spreadsheet program like Lotus 1-2-3, as illustrated below.

Solution Using a Spreadsheet Program

Using Lotus 1-2-3 [11] or a similar spreadsheet program, we select the columns C to G on
the screen (Fig. 11.11) to represent the five grid points of the width of the plate and the rows
6 to 15 to represent the first ten time steps in the calculation. The first column, C, represents
the heated surface of the plate; therefore the boundary condition is that the dimensionless
temperature is 1 at all values of time. Also, the last column G represents the location 0.4
cm from the surface of the plate which, for a certain period after the outer surface is being
heated will remain at § = 0. We therefore enter these values of the boundary conditions in
cells Q6-CI6 and G6-GI6 (Fig. 11.11). Finally, in the cells D6 to F6, which correspond
to the grid points m, m + 1, etc., after the first time-step, we place the initial temperature
condition of Q; the temperature increase at these grid points cannot be calculated until after

A
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Figure 11.12. Temperature distribulion in bath of slag resistance electric furnace, in the ab-
sence of natural convection [10].

the first ime-step. Now in cell D7, i.e., the grid point m at and at time-step 2, we write the
formula of (11.3.9), expressed in terms of the neighboring cells in the spreadsheet:

6, = D7 = %(C6+2><D6+E6)).

We then copy this formula into all the remaining empty cells of our time-space grid
(i.e., in cells D7-F135). As is shown on the computer screen of Fig. 11.11, the spreadsheet
program then automatically calculates the change of temperature proﬁle along the width of
the plate for each time step.

It can be seen that this technique allows us to use a very large number of grid points
and also to use as short a time interval as we like. Also, the boundary and initial conditions
of the problem need not be constant but may be expressed, for example, as a function of heat
convection to or from the environment. For example, in the case of a plate of finite length
L, the boundary condition at the second surface, ¥ = L, could be an equation expressing
the heat loss to the atmosphere by convection and radiation as a function of the temperature
entered in the cells of the column representing the surface L. In such a case, the boundary
conditions of (11.3.1) may be expressed as follows:

T=T, aa0<y<Randi=0,
T=T,aty=0and >0,
g=5x10"3712 1 1.1 x 107127 at y = L and all t,
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Electrodes

Figure 11.13. Schematic diagram of three-electrode slag resistance furnace [10].

where the last boundary condition expresses the heat losses by convection and radiation, as
will be discussed in Chapter 12 and Chapter 13, respectively.

Of course, the above example represents a very simple case of conduction. However,
the same principles can be applied to very complex geometries, such as Fig. 11.12 [10]
which shows the temperature distribution around the three electrodes in the slag resistance
electric furnace of Fig. 11.13 (at assumed negligible natural convection). In this case, most
of the heat is generated at the three graphite electrodes and is conducted through the slag .
towards the walls of the furnace. _

For additional reading on the mathematical modeling of heat transfer and other problems
in materials processing, the s is referred to Szekely et al. [12].

. zedde
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Heat Transfer by Convection

In Chapter 11, we developed and solved the differential thermal energy equation by assuming
that the only means for heat transport was by conduction. However, in the case of heat
transfer in fluids, or in fluidized solids, heat is also transported by fluid elements as they
move from a higher to a lower temperature zone. For example, the movement of air currents
within a room conveys heat from a radiator to other parts of the room. The transport of
heat associated with the motion of fluid is called convection.

12.1. THE DIFFERENTIAL THERMAL ENERGY BALANCE IN FLUIDS

In Chapter 5, we derived the continuity equation which expresses the conservation of matter:

% =—-V-pu, (5.1.7)

and the equation of motion which expresses the conservation of momentum in a fluid system:

Du

—=-V:-v-VP . 5.2.18

D + rg (5.2.18)
In non-isothermal fluid systems, we need to consider a third general equation which

expresses the conservation of thermal energy in the system:

D(pC,T) DP _ .
Tt gT T V(kVT)+7:Vu+4q, (12.1.1)

where D(pC,T")/ Dt is the substantial derivative (Chapter 5) of pC,T, i.e., the heat content
per unit volume of the fluid and is defined as follows:

D(pC,T) _ 8(pC,T) . 8(pCT) . 8(pC,T) . 8(pC,T)
Dt - ot tU g W gy % g

(12.1.2)

The symbol G in (12.1.1) represents the volume coefficient of thermal expansion (i.e.,
fractional expansion per degree of temperature); DP/D?t is the substantial derivative of
pressure; the term 7 : Vi represents the heat generated due to the shear stresses in the fluid
and ¢ is the rate of heat generation per unit volume of the fluid, e.g., due to electric heating
or chemical reaction.

In most heat convection systems, the heat generation associated with friction effects
{7 : Vu) is very small and can be assumed to be negligible; exceptions are very high velocity
flows at low temperatures and certain problems in lubrication. For assumed incompressible
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Figure 12.1. Heat energy balance in a cubical element (conveyed heat is shown only in the
x~-direction).

flow, which is the case for liquids and many gas flow systems, the heat generation associated
with expansion and contraction effects is also negligible. Therefore, the pressure derivative
and the shear stress terms can be neglected [5] and the thermal energy balance of (12.1.1)
is expressed as follows: :
D(pCpT)
Dt

Equation (12.1.3) can be derived by considering the thermal energy terms in and out
of an infinitesimal cubical element of volume dz - dy - dz in a fluid stream (Fig. 12.1). Heat
is transferred in and out of the element either by conduction or as heat conveyed by the
elements of the fluid; also, there may be heat generation or absorption within the control
volume due to a chemical or physical transformation, or due to resistance or induction
heating. The thermal energy balance is:

= V(kVT) +q. (12.1.3)

rate of heat accumulation in element

= net heat input rate by' conduction

. o _ (12.1.4)
4 net heat input rate by convection

+ rate of heat generation in element.

In Chapter 11, we showed that the rate of heat accumulation in a cubical element of
volume dz - dy - dz by conduction is:

8(pC,T) , - o _( 6T) a( g) a( a:r)
(_——Bt dx dydz " ez ks 3 + By ky 5y ) " oz k. dz dy dz.

(12.1.5)
If we now consndcr fluid movmg in the z-direction entering and leaving the element dz-dy-dz
through the sides dy-dz, it is evident that the keat flux carried by the fluid is equal to its heat

.
——
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content per unit volume, pC,T, times the fluid velocity, u., as shown by the dimensional
analysis of this product:

ML 3 x QM7 1x Tx Lt ' =Q¢ L2
Therefore, the net heat input rate to the element by convection in the z-direction is

O(pCpTu,)

[(pCpTusz)e — (PCpTuz)ards) dy dz = — oy

dz dy dz, (12.1.6)

and the commesponding rate of heat accumulation in the element because of convection in the
x-direction is:
8(pC;T)

- _ 8(pCypTuz)
( Bt dz dy dz) = 92 dz dy dz. (12.1.7)

conv

There are two more terms of convective heat in the y- and z-directions of flow.
Finally, the rate of heat accumulation in the element due to heat generation is expressed
by the rate of generation per unit volume times the volume of the element:

(L"g”—ﬂ dz dy d'z) = g dz dy dz. (12.1.8)

q

We can now add all the terms that contribute to the overall rate of heat accumulation
in the element: the net rate of conduction heat (see (12.1.5)), the net rate of convection
heat (see (12.1.7) plus two equivalent expressions for flow in the y- and z-directions) and
the rate of heat generation (see (12.1.8)). After eliminating redundant terms, we obtain the
following equation:

8(pCpT) _0 N ar i) 8’1‘)
-8t Oz ke 5z )" By (ky By) > (k' 8z

12.1.9
B(pCpTuz) + 9(pCpTuy) + 8(pCpTu) ny ( )
- 4,
Oz oy 8z
and by moving the negative term of this equation to the left side:
3(pCpT) + (pCpTuz) + 3(pCpTuy) + B(pCpT )

ot Oz oy 0z

(12.1.10)

0 oT 0 oT 9 or .

If we assume that C,, does not change appreciably with temperature, (12.1.10) can be
“ simplified by first differentiating each of the velocity-temperature terms into two terms; e.g.,
the z-term is differentiated as follows:

3(pCpTuz)

opus) , . B(oC,T)
dz

g B2 (12.1.11)

=GT —5, 2" bz
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We also note that for incompressible flow the sum of the three partial differentials of velocity
represent the equation of continuity (see (5.1.12)) and must be equal to zero:

(12.1.12)

By substituting from (12.1.11) and (12.1.12) in (12..1_.10) for incompressible flow, we

obtain
3(pC,T) 8(pC,T) 8(pCyT) 8(pC,T)
gt YT gg W g tT¥T g,

_2 k Qz +£_(k§?_ +_3_ ka_T + g (12.1.13)
T oz \ "8z ay 'Y oy gz \"98z) " ¥

It can be seen that, in vectorial form, the derived equation is identical to (12.1.3).
When the change in thermal conductivity and specific heat with location is negligible,
(12.1.13) simplifies further to

E+‘£.', 6—T+u £+u g—cx: 32T+82T+82T + 4 (12.1.14)
ot TO8x YOy 0z  \Bz2  Gy? 822 pCp’ T
and in vector notation: DT .
L — av? 4
57 = aViT + o (12.1.15)

As discussed in Chapter 11 on heat conduction, in flow systems of cylindrical and
spherical geometry, it is convenient to use the corresponding systems of coordinates. The
"cylindrical coordinates are the radial distance from the axis of the cylinder, the angle ¢
around a section of the cylinder, and the axial distance z along the length of the cylinder.
The relationships between these coordinates and the linear coordinates z, ¢, and z are as

follows (Fig. 11.2):
z=rcosf, y=rsind, z==z. (11.1.9)

By substituting the cylindrical coordinates in (12.1.15), we obtain

ot "or r 80 Bz \ror\ or r2 962 922 pCyp’
(12.1.16)

Similarly, the spherical system coordinates are related to x, y, z as follows (Fig. 11.3):
z=rsinfcos¢g, y =rsinfsing, z=rcosé, (11.1.13)
and by substituting in (12.1.14), we obtain the thermal energy balance for a spherical system:

5t " “"Br T 7 99 " rsind 8¢

co| 28 (Y, 2 E(sinl&ia—T— P 32T]+ g
Il = or r25in g 08 o r2sin® g 842 pCp’

(12.1.17)
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12.1.1. The Boussinesq Approximation

Equation (12.1.3), which was derived in the previous section for incompressible flow sys-
tems, can be extended to slightly compressible flows by using the Boussinesq approximation
[5] of expressing the change of density by means of the following linear equation:

p=p[l-B(T-T), (12.1.18)

where pg is the density of the fluid at some reference temperature Ty, and # is its coefficient
of thermal expansion. In the Boussinesq approximation, the temperature-dependent density,

p, is used only in the gravity term of the equation of motion and (5.2.18) and (12.1.1) are
expressed as follows:

po g =~V 7= VP+ (T~ Tole, (12.1.19).
and DT
pocpﬁt— =V (kVT) + q (12.1.20)

When the changes in viscosity and thermal conductivity with location are negligible,
the above equations can be simplified as follows:

PO% = pvzu - VP +pB(T - Th)g, (12.1.21)
and DT
p{,c*,,ﬁ =kV2T 4 g, (12.1.22)

where P represents the perturbation of the static pressure from the hydrostatic value. The
Boussinesq approximation is frequently used for the solution of the differential equations
for convection by means of numerical methods. Such methods have been greatly facilitated
by the advent of computers. In fact, a number of commercial computer programs, such as
the FIDAP program of Fluid Dynamics International [23] are now available where the user
can insert specific parameters and boundary conditions and obtain the solutions of fluid flow
and heat transfer problems.

12.2. FORCED AND NATURAIL CONVECTION OF HEAT

"Heat transfer by convection can be divided broadly into two categories: forced convection
and natural convection. In forced convection, the motion of the fluid is due to externally
imposed forces; for example, in the case of heat transfer to a fluid flowing through a heat
exchanger tube, the fluid motion is due to a pressure differential imposed by a pump.

In problems of this type, the mechanical and the thermal energy balances can be consid-
ered separately: We may start by solving the appropriate equations of continuity and motion
to determine the velocity distribution in the system; these results are then incorporated into
the thermal energy balance equation to calculate the temperature distribution in the system
and the heat flux at any location. Exceptions to this are problems where the density and
viscosity are temperature-dependent; in such cases, the velocity distribution in the system
cannot be specified without knowledge of the temperature field and the momentum and
energy balance equations must be solved simultaneously.
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In natural convection, the motion of the fluid is due to density varations which in
turn are caused either by temperature or concentration gradients in the system; an example
of combined thermal and concentration gradients is the natural convection of electrolytic
solution in a copper refining cell. Therefore, in natural convection, the equations of motion
and thermal energy are coupled and must be solved simultaneously.

12.2.1. Forced Convection in Laminar Flow Between Plates

Let us consider the laminar flow of a liquid in the z-direction between two paralle! plates

separated by a distance L (Fig. 12.2). The top plate is maintained at a temperature 7§ and

the bottom plate at the lower temperature 73. Let us derive the equations for the fully

developed velocity and temperature profiles between the plates, on the assumption that the

density and viscosity of the fluid are not temperature-dependent and that the temperature
gradient in the direction of flow is negligible (i.e., the term u.dT'/dx is negligible).

From the equation of motion (5%%=8), for steady-state we have (Chapter 4)
P dug
s dy?

(12.2.1)

Also, the equation of thermal energy balance (12.1.15) for unidirectional flow reduces to

8T

57 =0 (12.2.2)

This is a case of forced convection where the equations of motion and thermal energy
can be solved separately.. The boundary conditions are:

up, =0aty=0and u, =0aty= L.
Solution of (12.2.1) yields

Uy = g%m:) (L -%). (12.2.3)

Also, for the boundary conditions
T=T aty =0 and T='T2 aty=1L,

the solution of (12.2.2) is
T =T +(T —@)%. (12.2.4)
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Figure 12.2. Velocity and temperature profiles in flow between parallel plates at steady state
conditions.
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Figure 12.3. Velocily and temperature profiles in flow between parallel plates with fiuid ini-
tially at 73.

In derving (12.2.4), it was assumed that the velocity and temperature profiles were
completely independent of each other. Let us now consider the more plausible situation
where only the velocity profile is fully developed and the fluid at the inlet to the tube is at
a uniform temperature, T;, which is somewhere between the temperatures of the two plates.
As illustrated in Fig. 12.3, the problem is now two-dimensional, since the temperature is a
function of both = and . In this case, at £ = 0 the temperature of the fluid is uniform at 73,
while at large values of = the temperaturée profile is represented by (12.2.4). Let us examine
what will be the temperature profiles in the y- and z-directions at intermediate values of z:

The velocity profiles in this system are still expressed by (12.2.3). However, the
corresponding thermal energy balance, from (12.1.15), is now as follows:

2 2
or (a .2 T) . (12.2.5)

Up — = Eﬁ"l‘gy—z

Oz
The corresponding boundary conditions are:
T=Tiatz=0, T=Tjaty=0andz>0; T=Thaty=2Landz>0.

The corresponding temperature profiles now change with distance z, as illustrated in Fig.
12.3.



152 N. J. THEMELIS

ub, Tb

Flow

FO: 'I'=Tl
Figure 12.4, Velocity and thermal beundary layers in flow along a flat plate.

12.3. THERMAL BOUNDARY LAYER IN FORCED CONVECTION

Let us now consider a flat plate at the temperature T,, over which is flowing an incompress-
ible fluid in the z-direction (Fig. 12.4); the velocity of the free stream is u; (“bulk” velocity)
and the fluid is at a higher temperature, ;. The reader will recall from Chapter 6 that when
a free stream flows over a stationary plate, the velocity of the fluid within a boundary layer
next to the plate is affected because of the viscous force. In the isothermal, laminar flow
system which we discussed in Chapter 6, the velocity distribution in the boundary layer
was derived from the analytical solution of the equations of motion and was expressed as
follows in terms of the free stream velocity, uy, and the properties of the fluid:

ub—f(n)— 1= 5T

5 (12.3.1)

where
pe¥o_ ¥
8z  4.64 V:c/'u.z,’
and & is the thickness of the boundary layer at distance x from the leading edge of the
plate; ¥ is the perpendicular distance from the surface of the plate, uy the bulk fluid velocity
and v the kinematic viscosity (¢:/p) of the fluid.

In a similar way, we can visualize that in a non-isothermal system, for example the
flow of a hot fluid over a cooled surface, the temperature of the layers of the free stream
close to the surface will be somewhere between the temperature of the free stream and that
of the cooled surface. In Chapter 6, we called the region in which the velocity of the fluid
differs from that in the free stream the velocity boundary layer. Similarly, the region of the
fluid where its temperature is affected by contact with the surface of the solid is called the
thermal boundary layer. _

Let us now write the equations of motion and thermal energy balance for these boundary
layers. As discussed in Chapter 6, for incompressible flow in a two- dimensional system,
the equations of continuity and motion are -

Ou,  Ouy
— = 2.3.2
e -+ By 0, (12.3.2) _
and
iz Bur, p u,

Uz F.’L'_ + Uy a—y = ; 8y2 . (1233)
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The boundary conditions for the above equations are:

U =0, uy = 0 at y = 0 (plate surface)
Uz = Up, Uy =0 at y — oo {away from plate surface) (12.3.4)
U, = up at £ = 0 for all 3.

Also, in this case the thermal energy equation (see (12.1.15)) can be written in the following

form:
WOT O (9T O
o YO8y < \8z2 8y

This equation can be simplified further by considering that, in general, the temperature
gradient in the direction of flow z is much smaller than the corresponding term in the y-
direction; i.e., the transfer of heat in the direction of flow takes place mainly by corvection
rather than by conduction. Accordingly, (12.3.5) simplifies to

(12.3.5)

8T _ o'T '
2 — = 12.3.6
Uz 5 + 1, By o o ( )
The boundary conditions for this equation are:

T=T,aty=0, T=T,aty — o0,

12.3.7
T=Tyatz=0Vy. ( )

Let us now introduce the following dimensionless variable to express temperature:

T-T, Uz Uy
_Tb_T.s’ ﬁz—ub: ﬂy— ?

Uy

g =

where T}, and 7, are the temperatures of the bulk flow and of the surface, respectively; as
stated earlier, in this case T} > T,.

Restating (12.3.3) in terms of the above dimensionless velocities, we obtain

ﬁ xu' azﬂa: :
= 12.3.8
Ty ay = o O (12:3:)
The boundary conditions of the above equation are
= =0, =0aty=0, =1, =0aty=

B By=0aty B By y (12.3.9)

B:=1atz=0and all y.

Similarly, the dimensionless form of (12.3.6) is
9 9 _a %

= 2.3.10

and the dimensionless boundary conditions are

g=0aty=0Vz, 6=0atz=0Yy;, fB=1aty=ooc. (12.3.11)
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Figure 12.5. Effect of temperature on Prandtl number of some gases.

Since the velocity profiles of %, and u, are known from our earlier computation of
the velocity boundary layer (Chapter 6, (12.3.1)), we may proceed by substituting these
known relationships into the energy (12.3.9) and then integrate this equation by a numerical :
method. However, it should be noted that the dimensionless (12.3.3) and (12.3.5‘) are of -'19-'3. 40
identical form with the exception of the two coefficients u/p and «. These are, of course,
the kinematic viscosity and the thermal diffusivity of the fluid, respectively. As discussed
in Chapter 10, their ratio is defined by the dimensionless Prandtl number:

Pr= % = %ﬁ (12.3.12)

which represents the ratio of the rate coefficients for momentum transfer and for heat con-
duction. At large values of Pr, as in the case of slags, the capacity of the fluid to transport
momentum is greater than its capacity to transport thermal energy. In such cases, the dis-
tance away from the plate where the fluid velocity is affected will be greater than that for
the temperature of the fluid; in other words, the velocity boundary layer will be thicker than
the thermal boundary layer.

On the other hand, for Prandtl numbers much smaller than unity, as in the case of
liquid metals where Pr is in the range of 0.01-0.1, the velocity boundary layer is very
thin in comparison to the therma! one; we may then consider the velocity gradients to be

—negligible with regard to calculations of the heat convection between plate.and fluid. Finally,
when_the Prandtl numbcr is close to unity, as in the case with most gases (Fig. 12.5), the
-velocity and thermal boundary layers coincide: -

For Pr close to 1, the solution of the equations of motion and thermal energy balance

for gases is simplified. When this assumption cannot be made, (12.3.3) and (12.3.6) can be
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Figure 12.6. Calculated temperature profiles for laminar forced flow along a flat plate.

Figure 12.7. Velocity and temperature profiles for natural convection along a vertical wall, at
Ty > Th. '

solved by introducing the transform variable 7 as defined earlier in (12.3.1). The transformed
equations can be solved by the same numerical method as was used in computing the
velocity distribution in the boundary layer (Chapter 6). Figure 12.6 [25] shows the calculated
temperatures in a boundary layer as a function of the variable 77 and the Prandtl number.

12.4. THERMAL BOUNDARY LAYER IN NATURAL CONVECTION

In the previous section, we discussed the forced flow of a fluid past a surface. In such a
case, fluid flow is not coupled to heat transfer and the velocity profile can be calculated first
and then used to establish the temperature profile and heat flux.

LzhY
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Figure 12.8, Velocily and temperature profiles for natural convection along a vertical wall, at
T,g <« Tb.

In the case of natural convection, the fluid moves because of density differences caused
by temperature gradients. Therefore, as noted earlier, the equations of motion and heat
transfer are coupled. For example, let us consider a vertical plate of temperature T, which
is immersed in a liquid at a lower bulk temperature 7}, as illustrated in Fig. 12.7. Obviously,
the fluid film in contact with the plate will have a temperature of T, while the adjacent layers
of fluid will gradually approach the bulk ternperature at some distance away from the plate
surface.

The density of the layer of fluid next to the plate will decrease and the buoyancy effect

“will move the heated fluid upward. Due to the viscous forces, the velocity of the fluid layer
in contact with the stationary plate must be zero; it is also zero far away from the heated
surface. Therefore, the upward maximum velocity must occur at some intermediate distance
from the surface. Figure 12.7 is an illustration of the thermal and velocity boundary layers
for a fluid of Prandtl number greater than 1. The reverse situation, where the plate is at a
lower temperature than the fluid, is illustrated in Fig. 12.8. In this case, the motion of the
cooled boundary layer is downward,

For laminar flow, we can develop the equations for the temperature and ‘velocity proﬁles
near the plate on the basis of the equations of continuity, motion, and thermal energy balance:

Equation of continuity: at; + By =0, o (124)
. . z Ju, 62
Equation of motion: u_ 61; + 1y 81;; = o =+ 9.08(T, - T), (12.4.2)

where g, is the component of the acceleration due to gravity in the z-direction; § is the
coefficient of expansion of fluid with temperature (fractional expansion per degree of tem-
perature); T, and T} are the temperatures of the fluid at the surface of plate and in the fluid
bulk; T is the temperature of the fluid at distance z from the leadmg edge and distance y
from the surface of plate (Figs. 12.7-12.8).
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Figure 12.9. Dimensionless velocity profiles for laminar natural convection along a vertical
plate.

The gravity term in (12.4.2) represents the buoyancy force in the flow system due to the
thermal expansion of the fluid. In view of the assumption that conduction in the z-direction
is negligible in comparison to convection, the thermal energy balance equation is expressed

as follows:

oT oT *T
u,,a + uy i “a—y2‘ (12.4.3)

The boundary conditions for the above equations are:

Uz =uy=0aty=0, wu.=0aty=o0,
u=0atz=0, T=T,aty=0, (12.4.4)
T=Thaty=00, T=Tpatz=0.

The above coupled equations are nonlinear and must be solved by numerical tech-
niques. Figures 12.9 and 12.10 [2] show the calculated velocity and temperature profiles, in
dimensionless form, for Prandtl numbers ranging from 0.01 to 1000. The quantity appearing
on the z-axis is a function of location and of the dimensionless group called the Grashof
number (Gr, Table 2.1). This group represents the ratio of the buoyancy forces, i.e., those
created by density gradients, to the viscous forces in the fluid system. The Grashof number
was derived by expressing the solutions of the natural convection equations in dimensionless
form and is defined as follows:

_ 29’ B(T, —To) _ 2°0:0(T: = Th)

Gr 2 2

(12.4.5)

The Grashof number for natural convection has a similar function to the Reynolds
number for forced flow. Thus, for a vertical plate in a non-confined system, the transition
from laminar to turbulent flow has been found to occur at (GrPr) > 10°.
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Figure 12.10. Dimensionless temperature profiles for laminar natural convection along a ver-
tical plate.

12.5. THE HEAT TRANSFER COEFFICIENT

In the first part of this chapter, we showed how the differential equations of motion and
thermal energy balance can be used to develop the temperature and velocity profiles for
heat convection in relatively simple laminar flow systems. However, in most engineering
problems, we are not interested in a detailed description of the velocity and temperature
distributions but in determining the rate of heat transfer between a fluid and a surface. In
principle, this can be done by first establishing the temperature distribution in the boundary
layer between surface and fluid and then calculating the heat flux at the heat transfer surface:

aT
Gy = —k (——-) . (12.5.1)
y dy y:ﬂ

However, in many cases, this procedure is not feasible, particularly for turbulent systems
or complex geometries where the velocity profiles cannot be determined from first principles.
It is therefore necessary to use experimental data. In order to provide a rational framework
for correlating and disseminating empirical data on heat transfer, the concept of the heat
transfer coefficient has been introduced. Let us consider the case of heat transfer from
a surface at temperature T, to a fluid at a lower bulk temperature T}, under steady state
conditions. It can be shown experimentally that the heat flux from the surface to the fluid
is proportional to the temperature difference between them:

g (Ts —Tt). (12.5.2)

In the case of conduction, the proportionality constant between heat flux and temperature
difference is equal to the conductivity of the fluid divided by the thickness of the conducting
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layer. However, in the case of convection, the thickness of the conducting layer, i.e., the
boundary layer, depends on the flow conditions. Therefore, we introduce in (12.5.2) a
proportionality constant, k, the value of which must depend on the thermal diffusivity of
the fluid as well as on the properties of the flow system:

g = h(T, ~ T). (12.5.3)

The proportionality constant £ is defined as the heat transfer coefficient. Its dimen-
sions can be derived from the form of the above equation and are: '

heatﬂux= Q
AT  —tL2T

(12.5.4)

The units of the heat transfer coefficient are W m—2 K~1 in the SI system, and cal s—1
cm—2 °C~! in the metric system.

By analogy to Ohm’s electric resistance law, the temperature difference corresponds to
voltage -and the heat flux to current; the heat transfer coefficient is then equivalent to the
electric conductance (i.e., l/resistance).

12.5.1. Factors Affecting the Heat Transfer Coefficient

As noted above, the heat transfer coefficient depends both on the thermal properties of the
fluid and on the flow conditions in the system. Also, since the properties of the fluid may
depend on temperature, 2 may also be a function of temperature. Table 12.1 [3] shows the
range of values of heat transfer coefficients encountered with gases and liquids, in different
types of fluid systems. -

For fully developed flow, the heat transfer coefficient is independent of position. How-
ever, for situations where the boundary layer thickness varies with location, e.g., in flow
around a particle, the value of % is also variable. This is illustrated in Fig. 12.11 which
shows the interference photograph of a natural convection boundary layer around a horizontal
heated tube [4]. '

12.6. HEAT TRANSFER CORRELATIONS

The heat transfer coefficient for a particular situation can be obtained either by direct mea-
surement or by means of an existing semi-empirical correlation. Such correlations are
usually presented in terms of the dimensionless groups introduced earlier (Table 2.1). Thus,
the thermal properties of the fluid are represented by the Prandtl number:

Pr= %. (12.6.1)
where Cj, is the specific heat of the fluid; u is the viscosity of the fluid; k is the thermal
conductivity of the fluid.

In the case of forced convection, the fluid system is represented by the Reynolds number

Re = %, (12.6.2)

where L is the characteristic system length, u the fluid velocity, and p the fluid density.
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Table 12.1. Typical Values of Heat Transfer Coefficients [3]

h, Wm2K!

Natural convection in gases:

To air around low temperature equipment { K) 3-8
To air around high temperature furnaces (>1000 K) 8-14

Natural convection in liquid metals:

Molten metals in contact with wall at AT < 1000 K 1000-3000
Molten iron in contact with watercooled plates 7000

Forced convection in gases: . _

Air flow in pipes (1-50 m s™) ‘ 10-200
Gas flow in packed beds (1000 K) 135

Forced convection in water: :

_ Turbulent flow in pipes (u=1 ms™) . 10008000
Flow through pipes with incipient beiling 5000-10°
Quenching of hot metal into water or oil 50-500
Metal cooling with water sprays/curtains 3000

Radiation from surfaces: :

Boiling water : 10
Clean liquid metals 30150
High-temperature refractories, slags, 200-500

oxides and luminous flames

Figure 12.11. Interference photograph showing variation of thickness of natural convection
boundary layer around a horizontal heated Lube,
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In natural convection, the corresponding group is the thermal Grashof number:

L3p?gBAT

Gr = 2

; (12.6.3)
where g is the acceleration due to gravity; § is the thermal expansion coefficient (fractional

expansion/degree); AT is the temperature difference between surface and bulk fluid.
In general, the correlations for forced convection are of the following form:

Nu = f(Re, Pr), (12.6.4)

and for natural convection:
: Nu = f(Gr, Pr), . - {12.6.5)

where Nu is the dimensionless Nusselt number (Table 2.1):

h hL
N=D = F

As in the case of the Reynolds number, L is the characteristic length of the flow system
(e.g., pipe diameter, length of plate, etc). As indicated by the form of (12.6:6), .the Nusselt
number represents the ratio of convective to conductive heat transfer throughi the fluid. -

In heat transfer correlations, when the temperature for estimating a fluid propcrty is -
not specified, the value of all properties should be calculated at the mean film temperature
which is defined as the average of the bulk flow temperature of the fluid and the surface
temperature:

(12.6.6)

Tbu]k + Tsurfacc
2

A number of heat transfer correlations of relevance in the processing of materials are
described in the following sections. For additional information, the reader is referred to
handbooks on heat and mass transfer [5,20,22] and other reference books listed at the end
of this chapter. Some cormrelations are based on a limited number of experimental data;
therefore, their validity is limited to a particular geometry and to the range of Reynolds (or
Grashof) and Prandtl numbers examined in the original study. Consequently, care must be
exercised in extrapolating such cormrelations beyond the range studied.

Heat transfer comelations for laminar or turbulent flow through pipes and over flat
surfaces are quite well established. The same can be said for the correlations to be presented
for convective heat transfer to spheres and cylinders. There is less information available
on more complex systems, such as stirred or gas-injected liquids, rotary kilns and fluid bed
reactors.

12.6.1. Forced Convection Through Pipes and Ducts

For fully developed laminar flow through a pipe, the Nusselt number is a function only of
the type of boundary condition at the wall surface. Thus, at constant surface temperature

Taim = (12.6.7)

Nu = 3.66. (12.6.8)

L

and at constant heat flux .
Nu = 4.36. (12.6.9)
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Figure 12.12. Variation of local Nusselt number in the entry region of a tube (laminar flow,
constant heat flux, [5]).

However, in the entrance region of the pipe, i.e., prior to establishing fully developed
flow, the Nusselt number can be considerably higher. The available correlations are shown
in graphical form in Fig. 12.12 [5]. In this plot, the distance from the entrance point is
expressed in dimensionless form as

I
I+ = R
rpRezPr

where 7, is the pipe radius and Re. is the Reynolds number at distance z from the entry
. point. Figure 12.12 shows that the flow becomes fully developed (i.e., Nu reaches a constant
value) at values of =t of about 0.2,

For turbulent flow through pipes, the following correlation was proposed by Dittus and
Boelter [6] and has been confirmed by numerous other investigators:

hd
Nu = —Eﬂ = 0.023Re%%Pr", (12.6.10)

where d is the pipe diameter; n = 0.3 for T, < Thuia; 7 = 0.4 for Ts > Thuia- :

This correlation is valid for Re > 10000, and for the range 0.7 < Pr < 100. It can
also be used for non-circular conduits, by substituting the hydraulic mean diameter (dy), as
defined in Chapter 8 (see (8.5.10)), for the diameter of the pipe.

For liquid metals, i.e., at very low Prandtl numbers, Lyon {7] proposed the following
correlation for constant net fiux at the pipe surface and for values of the Peclet number, Pe
{Pe = RePr) over 100:

Nu = 7 + 0.025Pe™2, (12.6.11)
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Figure 12.13. Nusselt number as a function of Re for fully developed flow in circular tubes
(constant heat flux, [5]).

A similar correlation was proposed by Johnson et al. [8] for the range 200 < Pe <
10000:

Nu = 5 + 0.016Pe®, - (12.6.12)

and by Seban and Shimazaki [9] for heat transfer from a piﬁc at constant temperature to a
liquid metal:

Nu = 4.8 + 0.025P"8, (12.6.13)

Figure 12.13 [5] is a graphical representation of heat transfer correlations for turbulent
flow through cylindrical conduits. The low Pr curves on this graph represent heat transfer
to liquid metals.

12.6.2. Foxrced Convection Over Plates

For laminar flow over a flat plate, which is defined to extend up to Re; < 10%, the following
correlation has been derived [10] by solving the appropriate boundary layer equations:

_ hez

Nu,
b= =

= 0.332Rel/?pr/3, (12.6.14)
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Figure 12.14. “Ring” of protective thermal accretions formed around CHg-shrouded tuyere
for injecting oxygen in liquid steel [3].

where Nu,, Re., and k. are values of Nu, Re, and £ at distance x along the plate. The
corresponding average value of the Nusselt number over a plate of length L is

L
— 1
Nu=< f Nu, dz = 0.664Re} *Pri/3. (12.6.15)
0
Equation (12.6.15) is valid only for Pr > 0.7. For liquid metals, the following rela-

tionship has been proposed by Eckert and Drake [16]:

(Re, Pr)l/2

Nu; =
1.55Pr*/2 4 3.09(0.37 — 0.15Pr)L/2

(12.6.16)

For rurbulent flow over a flat plate, the following equation was recommended [14] for
the range of Rez > 10° and Pr > 0.7:

Nugz = 0.037Re38pr'/3. (12.6.17)

For a gas jet impinging on a solid surface, Huang [13] derived experimentally the
following correlation:

. hd: A74q.
Nu = TJ = 0.02Re%87prl /3 (12.6.74)
where
Re = 4i%p
” ]

and k is the mean heat transfer coefficient over the impingement surface; d; is the diameter
of jet at nozzle exit; u; is the jet average velocity above point of impingement

Example 12.6.1 | 3]

The Savard-Lee tuyere for gas injection into metals (Fig. 12.14) consists of two concentric
pipes; through the inner pipe flows oxygen and through the outer annulus a hydrocarbon
gas, such as methane. The objective of the tuyere is to use the hydrocarbon annular flow to
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“shield” the tuyere refractory wall from the oxygen stream, at the entry point to the reactor.
- The cooling effect is provided by the heating and thermal decomposition of the hydrocarbon
gas as it flows through the metal accretion that forms around the tuyere (Fig. 12.14). It is
required to calculate the efficiency of utilization of natural gas in the following application
of the Savard-Lee tuyere for steelmaking in a bottom-blown converter:

Oxygen flow through central tuyere 1920 Nm®/h
Methane gas flow through annulus 96 Nm®/h

(5% of oxygen flow)
Diameter of tuyere in operation 01lm
Estimated width of metal accretion 0.15m
around tuyere (Fig. 12.14), cm
Estimated average velocity of 0.5m/s
liquid steel over accretion
Steel bath temperature (T},) 1620°C
Melting point of steel (Tp,) 1490°C
Decomposition and sensible heat 182248 ] /mol
absorbed by CH,
Physical properties of steel at p = 7000 kg/m’; 1L = 6.7 x 10 kg/(m s);
at bath temperature Cp =750 J/(kg K); kslag = 41.8 W/(m K)

First, we calculate the Reynolds and Prandtl numbers for the liquid steel flow over the
tuyere accretion, by using the width of the accretion zone, z, as the characteristic length:

. . 7 T -3
a:up=015x05x7000=78360 Pr___Cp,u,_ 50x6.7x 10

Re, = 6.7 < 103 P 418

= 0.12.

Then, by using the Eckert correlation (see (12.6.16)) for heat transfer between a liguid
metal and a plate of length z, we calculate the heat transfer coefficient between steel bath
and the ring of accretion around the tuyere:

- (Re, Pr)%-8
*  1.55Pr™% + 3.09(0.37 — 0.15Pr)0-5
_ (78360 x 0.12)%-5
"~ 1.55 x 0.129-5 + 3.09 x (0.37 — 0.15 x 0.12)0-5
=40.91, '

and h = (Nu k/z) = (40.91 x41.8/0.15) = 11.4 kW m~2 K~1. Therefore, the heat transfer
rate between liquid and accretion ring is

Q = hA(Ty ~ Tnp) = 11.4 X % x (0.25% —0.10?) x (1620 — 1490) = 61.11kW.
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By comparing this amount of heat input to the decomposition and sensible heat absorbed
from the tuyere zone by the methane flow, we obtain

96 x 1000 - '
CH, cooling capacity = m x 182248 = 216960 W = 217 kW,

61.11
217

% utilization efficiency of CH, = x 100 = 28.2%.

12.6.3. Forced Convection to Spheres and Cylinders

As noted earlier for a cylinder (Fig. 12.11), the local heat transfer coefficient along the
surface of a sphere varies with location. The maximum value is attained at the foremost
point of the sphere with respect to the direction of flow, where the boundary layer is thinnest.
The average coefficient for heat transfer between the surface of a spherical particle and the
surrounding fluid can be estimated from the following equation, which was first developed
by Frossling [17] and is sometimes called the Ranz-Marshall comelation in honor of the
chemical engineers who firmly established its use in heat transfer to droplets. [18]:

Nu = 2.0 + 0.6Re!/2pr/3. (12.6. 18)

It can be seen that this comelation predicts that at zero relative velocity between sphere
and fluid the Nusselt number will be equal to 2. Under these conditions, heat transfer occurs
only by conduction through the stagnant gas. Let us examine, from a theoretical point of
view, the value of the heat transfer coefficient in the limiting case where there is no relative
motion between fluid and particle and at steady state conditions. The rate of heat conduction
across a gas shell of differential thickness dr is expressed as

Q. = 4nr? (k ‘;—f) (12.6.19)

where Q). is the rate of heat transfer by conduction; k is the thermal conducl‘.mty of the
gas; T is the temperature at distance r from the sphere center.
By integrating the above equation for boundary conditions T' = T}, at r = 7, (outer
radius of boundary layer) and T' = T}, at r = 7, (particle radius), we obtain

Q.= (;f% (T —T). (12.6.20)

Tp ™

However, by definition, the boundary layer thickness in a stagnant fluid is infinite; conse-
quently, 1/7, = 0 and (12.6.20) simplifies to

Q. = dnkrp(Ty — T3)- (12.6.21)

If we now assume the existence of an equivalent heat transfer coefficient, as defined
by (12.5.3), we can express Q. as follows:

Qe = h(4nr2) (T, — Tp), (12.6.22)
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whcre h is the heat transfer coefficient between gas and particle.
Comparison of (12.6.21) and (12.6.22) shows that the following identity exists:

hr, = k. ' (12.6.23)
Equation (12.6.23) can be rearranged in tcmis of the Nusselt group as follows

Nu=20_ o (12.6.24)

&k
where d, (i.e., 2rp) is the particle diameter.

Therefore, in the limiting case of a spherical particle in a motionless fluid, the Nusselt
number at steady state conditions has the value of 2, as stated in the Frossling and Ranz-
Marshall correlations. As will be shown in Chapter 17, similar considerations apply for
mass transfer to spherical and cylindrical particles.

A similar correlation to (12.218) was derived experimentally by Wait [21] for heat
transfer to a sphere immersed in a liquid metal:

Nu = 2 + 0.38(Re Pr)®>. (12.6.25)

For forced flow around a cylinder which is pei'pendicular to the direction of flow, the
following correlation has been proposed [20]:

Nuo = g Re? Pr%33 (12.6.26)

where a and b depend on the range of Reynolds number as shown in the following tabulation:

Re a b
044 0.989 0.330
440 0.911 0.385
40-4000 0.683 0.466
4000-40000 0.193 0.618
40000400000 0.027 0.805

12.6.4. Natural Convection to Vertical Plates

In most correlations for natural convection, the Grashof and Prandtl numbers have the same
power exponent. Therefore, some authors have presented their correlations in terms of the
Rayleigh number, which is equal to the product Gr Pr (Table 2.1). As in the case of other
correlations, it is necessary to state whether the expressed heat transfer coefficient is local,
i.e., at a certain distance z from the point at which natural convection starts, or average,
i.e., over the entire height of the plate. In local heat transfer correlations, the value of x is
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used to calculate Nu and Gr; in averaged correlations, the characteristic length is the height
of the plate, L.

As stated earlier, in natural convection over plates, the flow is considered to be laminar
when the product GrPr < 10°, For lamingr natural convection to vertical plates, Bckert
[24] proposed the following correlation for the local heat transfer coefficient:

hz _ 0.508Gr™*°Pro®

Nos = 2= = 095 + P05

(12.6.27)

where z is the distance along the plate. This equation was found to be applicable over a
wide range of Prandtl numbers, including liquid metals. A very similar correlation has been
proposed [2] for the average heat transfer coefficient in the laminar range of 10* < GrPr <
10° and for a very wide range of Prandt numbers (0.0084 < Pr < 1000:

‘hL  0.65Gr™28p0-S

Nuz = 2= = D861+ P

(12.6.28)

In the range of 0.6 < Pr < 10, which does not include liquid metals or slags, the
following simpler correlation has been proposed by numerous authors [3,5,23]:

Nu = 0.56(GrPr)*®. (12.6.29)

For turbulent natural convection to vertical plates, Eckert and Jackson [19] developed
the following correlation:

0.4p.7/16
Nu, = 0.0295Gr "Pr . (12.6.30)
. (1 0.494Pc%/3)2/5
For gases (Pr = 0.7-1), this correlation yields Nusselt number values close to the following
simpler correlation by Gebhart, also for the turbulent regime of flow [24]:

Nuy, = 0.02(GrPr)%4. (12.6.31)

Another correlation that has been proposed [5] for turbulent natural convection from
gases to vertical plates shows the product GrPr to the power of 0.333 instead of 0.4 as in
the above correlations:

Nu; = 0.12(GrPr)!/3. (12.6.32)

This correlation is very close to that recommerded by Geiger and Poirier [23] for the range
of 0.6 < Pr < 10:
Nuz, = 0.13(GrPr)!/3. (12.6.33)

Rohsenow et al. [5] noted that for the turbulent range of 101 < GrPr < 1012, the
calculated difference in the values of Nu for the two types of correlation (i.e., power exponent
of 0.4 or 0.333) for a large number of experimental data was between +24% and —9%; the
accuracy of the data is not sufficient to indicate which of the two expressions is preferable.
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By integrating the correlations for the local Nu over the entire length of the plate,
we find that the following correspondence applies between the average and local Nusselt
numbers:

For laminar flow, (GrPr)®% : Nuy = %Num

For turbulent flow, (C‘u'Pr.)""m : Nup = %Nuz,

For turbulent flow, (GrPr)%¥2%: Nug = Nu,.

12.6.5. Natoral Convection for Other Geometries

The available correlations for heat transfer by natural convection to other geometries are
of a similar form to those discussed above for vertical plates. For laminar boundary layers
(GrPr < 10°%), Rohsenow ¢t al. [5] recommended the following correlation:

Nug = a{GrPr)??, (12.6.35)

where the constant a is a function of the geometry of the system and Prandtl number. For
the low Pr range of gases (Pr = 0.6-1), e is nearly independent of Pr and, on the basis of
the available correlations, is related to the geometry of the system as shown in the following
tabulation: -

Geometry of system | a
Horizontal cylihder, L = diameter - 0.47
Sphere, L = diameter 0.49
Horizontal plate facing upward 0.54

(downward if cooled), L = width
Horizontal plate facing downward 0.27

(upward if cooled), L = width

Similarly, in the turbulent regime of natural convection {GrPr > 10°), Rohsenow et
al. [5] recommended the following generalized correlation:

Nug, = 5(GrPr)®3%, (12.6.36)

where, for gases b also depends on the geometry of the system, as shown in the following
‘tabulation:

Geometry of system b
Horizontal cylinder, L = diameter | 0.10
Horizontal plate facing upward (or downward 0.14

when plate is colder than fluid), L = width
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fluid A at Ty >Tg

fluid B at Tg

Figure 12.15. Heat transfer across the wall of a duct.

For natural convection to small spherical particles, the following correlation has been
proposed [23}]: _
Nu =2 -+ 0.06Gr'/4prt/3 (12.6.37)

for the range of Gri/4Ps/® < 200. This range covers particles of the size encountered in
fluid bed and flash reactors. - -

12.7. THE OVERALL HEAT TRANSFER COEFFICIENT

In §12.5, we defined the heat transfer coefficient as the constant of proportionality between
the heat flux by convection and the driving force of the temperature difference between a
fluid and a surface. In a similar way, it is convenient to define an overall heat transfer
coefficient in systems which involve sequential conduction and convection of heat, such as
heat transfer through furnace walls. For example, let us consider the transfer of heat across
the walls of a rectangular duct (Fig. 12.15). Heat is transferred by convection from the fluid
A to the inner surface of the duct wall; then by conduction across the wall thickness Y'; and
finally by convection from the outer surface of the duct to fluid B which is flowing around
the duct.

Let us consider a location where the terperature of fluid A is T4 and the temperature
of fluid B is Tz. The heat flux from fluid A to fluid B is then expressed as follows:

Q

ky
@y=7= ha(Ta—Twi) =<

Y (Tw.l' - Tw.o) = hB(Tw,o —TB), (12.7.1)

where g, is the heat flow Q per area A; hy and hp are the heat transfer coefficients by
convection in fluids A and B; k., is the thermal conductivity of the wall; T,, ; and T, ,, are
the inside and outside wall temperatures.

Equation (12.7.1) is very similar to (10.7.10) which was presented earlier for conduction
through a composite wall. By eliminating algebraically the intermediate temperatures T, ;
and Ty o, (12.7.1) can be rewritten as follows:

1
Iy = ( 1 Y 1 ) (Ta —Tg) = hov(Ta - Tp). (12.7.2)
hA + H + hB .



HEAT TRANSFER BY CONVECTION 71

o
. —//_

-~
P
et

AN

LY,
(

o~
o
'

(¢)

Figure 12.16. Thermal energy balance on {z) an infinitesimal volume element, (b} a section
element, and (¢) the entire volume of the vessel.

The term in the first parenthesis of the above equation is defined as the overall heat
transfer coefficient and in the last term is denoted by hoy:

(12.7.3)

<l =

h-ov =

1 3
Fa TR T Rp

F

w

It can be seen that in analogy to Ohm’s law, the individual coefficients, h4, hp, and
kw/Y may be regarded as conductances, i.e., the reciprocal of resistances; thus, the total
resistance to heat flow is the sum of the individual resistances.

The above equation was derived for steady state conditions and also for heat transfer
across a planar surface, so that the heat transfer area A does not change with . In a
cylindrical duct or pipe, the surface area for heat transfer does increase with distance from
the center. As illustrated earlier, for conduction through a composite cylindrical wall, this
geometrical effect is accounted for by the following modification of (12.7.3) for a cylindrical
conduit:

1 1 + In(d,/d;) + 1
hov,odo B hAd'a 2kw thi’
where d, and d; are the outside and inside diameters of the pipe wall, respectively, and the
calculated overall coefficient, hovo, is t0 be used in conjunction with the outside surface
area of the conduit.

(12.7.4)

12.8. THE OVERALL THERMAL ENERGY BALANCE

At the beginning of this chapter, we obtained the differential equations for convective heat
transfer by establishing an energy balance over an infinitesimal volume element (Fig. 12.16a).
As discussed earlier, this method provides detailed information on the temperature and
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Steam

Figure 12.17. Counter-current flow heat exchanger.

velocity profiles in a fluid system. In this section, we shall discuss the overall thermal
energy balance in which the control volume is chosen to extend over the entire cross section
of the system and is of infinitesimal width only in one direction, usvally the direction of the
fluid flow (Fig. 12.16b). '

The technique of overall thermal energy balance is analogous to the overall mechanical
energy balance which was discussed in Chapter 8. It is much simpler than the differential
thermal energy balance but requires additional information in the form of the heat transfer
correlations which were discussed in this chapter.

12.8.1. Thermal Energy Balance in a Pipe

Let us consider a fluid of specific heat C,, flowing through a pipe at a mass flux G (dimen-
sions M t~1 L~2) at steady state conditions. The pipe is heated externally (e.g., by steam)
to a uniform temperature 77,,. The inlet temperature of the fluid into the pipe, at point 1,
is Tp and the heat transfer coefficient, h, from the pipe wall to the fluid, is assumed to be
constant throughout the pipe.

It is required to develop an equation relating the temperature of the fluid to distance
from the inlet point and, also, an expression for the total amount of heat transferred to the
fluid over a length L of the pipe. With reference to Fig. 12.17, the control volume for this
problem is chosen to be a section of the pipe of diameter d, and length dz. Assuming that
the conduction of heat in the fluid in the z-direction is negligible, the heat balance over the
cylindrical section of length dz is:

1CodT = h(ndydz)(Tw — T, (12.8.1.)

where 77 is the mass flow rate (e.g., kg s~1); dT is the temperature increase of fluid over
length dz; C, is the specific heat capacity of the fluid; T, is the wall temperature.
This is a first-order differential equation which must be solved for the following bound-
ary condition: '
T=1T5atz=0.

By integrating (12.8.1) between £ = 0 and z, we obtain

Ty - Tg (ﬂ'd h)
In = ={—= |z, - (12.8.2.
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1 2
Tp,1 5_ === Heating Fluid B 5 Tpz
T Cooled Fluid A ——o Taz
Figure 12.18. Counter-current flow heat exchanger.
and therefore
T =T\, — (T, — Tp) e~ "deh/Cr)=, (12.8.3)

It can be seen that the temperature of the finid approaches the temperature of the
wall asymptotically with distance travelled through the pipe; the larger the heat transfer
coefficient, the faster is the approach of 7" to 7.

The total rate of heat transfer between the wall and the fluid over the distance L is
expressed as follows:

Q@ = mCp(TL — Tp), (12.8.4)

where Ty, is the temperature'of- the fluid at distance L from the entrance of the pipe.
Combining (12.8.2) and (12.8.4) and rearranging, we obtain

(Tw — TO) — (Tw — TL)

In (%u:_%)

Q = h(nd,L) , (12.8.5)

where the first parenthesis represents the surface area of pipe wall over the length L.

12.8.2. The Logarithmic Mean Temperature Difference

The quantity in the brackets of (12.8.5) is defined as the logarithmic mean of the final
(T, — Ty) and the initial (T, — Tp) temperature differences. The abbreviated notation of
this “mean” driving force for heat transfer is shown in the following expression of (12.8.5):

Q = hAATLy, . (12.8.6)

where A is the area available for heat transfer.

The logarithmic mean temperature difference is very useful in heat exchanger calcu-
lations where the temperatures of the fluid and the wall are varying with distance. As an
example, let us consider heat transfer in the counter-current flow of two fluids through a
heat exchanger (Fig. 12.18). In this case, the lower temperature fluid A enters the heat
exchanger at point 1 and temperature T4 ; and leaves at the other end at temperature T'4 2.
The heating fluid B enters at point 2, at temperature Tz o and leaves at 1 and temperature
Tg,. If we assume that the heat exchanger is well insulated and the heat losses to the
environment are negligible, the overall thermal energy balance yields:

heat gained by fluid A = heat lost by fluid B, i.e.,
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maC. ,A(TA,2 — TA.l) =mgC. ‘B(Tg,l — TB,z). (12.é.7)

In heat exchanger tubes, the thermal conductivity of the tube is high and the wali
thickness kept at 2 minimum. Therefore, the “resistance” due to conduction through the
tube wall is negligible and the overall heat transfer coefficient can be expressed as follows:

1 1 1
e =T + e’ (12.8.8)

where k4 and hp are the heat transfer coefficients for convection in fluid A and fluid B. In
analogy with (12.8.6), the rate of heat transfer in this case is expressed as

Q@ = hov AAT LM, (12.8.9)

where the logarithmic mean is now defined by the following equation:

ATpps = (Tp,y —Taa) —(Tp2 — Ty, 2) (12.8.10)
n (Tn 1~Ta 1)

Tpa—Ta,z

By introducing in (12.8.10) any set of hypothetical values of inlet and outlet temper-
atures, it can be shown that counter-current flow of the fluids A and B, that is when they
are flowing in opposite directions, results in a higher logarithmic mean temperature than
co-current flow.
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THIRTEEN

Heat Transfer by Radiation

All forms of matter can emit or absorb thermal energy in the form of radiation. The rate at
which radiation is emitted from a body is proportional to the fourth power of its temperature.
Therefore, radiation is the dominant mode of heat transfer in high-temperature processing
systems, such as pyrometallurgical reactors. For example, radiation accounts largely for heat
transfer from a luminous flame to a combustion chamber and for heat loss from an open
port in a furnace. ‘

Radiant energy may be considered to be transported either by photons or by electro-
magnetic waves. In modern physics, both of these concepts are used in a complementary
fashion to explain various facets of radiation. For our purposes, it is sufficient to consider
radiation as the transport of energy by means of electromagnetic waves travelling at the
speed of light. The propagation velocity is related to the wavelength as follows:

c= AV (13.1.1)

-where A is the wavelength and 7 the frequency of propagation. _

As shown in Fig, 13.1, the wavelength of electromagnetic radiation ranges from hun-
dreds of kilometers for radio waves to less than one angstrom (1'x 10~2 m) for gamma and
cosmic rays. The wavelength range of interest in heat transfer is in the visible and infrared
ranges and extends from about 0.2 to 20 microns.

As in Chapters 10-12 on heat conduction and convection, we will use the symbol @
to represent heat transport rate (Q t~!) and g to denote heat flux (Q t~1 L=2).

13.1. BLACK-BODY RADIATION

A black body is defined as a surface which absorbs all the incident radiant energy. At a
given wavelength, the energy emitted per unit surface area of a black body is called the
monochromatic emissive power. It depends only on the temperature of the body, as expressed
by Planck’s radiation law:
BaA= L_s (13.1.2)
B"\_ecﬂf}‘T—l’ i rd

where Wj-,., ) is the monochromatic emissive power (i.e., radiant energy flux per unit wave-
length); C} is a constant = 2rhc?; Cy is a constant = ch/k; c is the velocity of light; h is
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Figure 13.1. Electromagnelic wave spectrum,
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Figure 13.2. Monochromatic emissive power of a black body as a function of temperature
and wavelength.

Planck’s constant = 6.625 x 10727 erg s; k is Boltzmann’s constant = 1.381 x 107° erg
K~ [3].

Figure 13.2 is a plot of the monochromatic emissive power as a function of wavelength
at different temperatures. It can be seen that these plots exhibit the following characteristics:



HEAT TRANSFER BY RADIATION 179

a. At a given wavelength, monochromatic radiation increases with increasing
temperature.

b. At a given temperature, maximum radiation occurs at a particular wavelength
(this explains why “red-hot” metal at 800°C appears to become “white-hot”
when heated to 1100°C.

c. As the temperature increases, maximum emission occurs at progressively
smaller wavelengths (this fact is utilized in the design of optical and elec-
trooptical pyrometers for measuring temperatures).

By setting '
dWp » _
dx

and differentiating the monochromatic emissive power (see (13.1.2)), we find that the wave-
length at which maximum emission occurs is expressed by the following equation, called
the Wien displacement law:

(13.1.3)

(AT )max = const = 0.2898 cmK. (13.1.4)

The total rate of radiant energy emission per unit surface area (total emissive power)
of a black body is obtained by integrating (13.1.2) over the entire spectrum of wavelengths:

Wp = / Wi 2dA = f ( G0 1) d. (13.1.5)

The above equation has been integrated [1,2] to yield the following simple equation
which is called the Stefan—Boltzmann law of radiation:

Wp = oT*, “ (13.1.6)

where W is the total radiant energy flux (dimensions: Q t—* L~2) at temperature T' (in K);
o is called the Stefan—Boltzmann radiation constant, and its theoretical value is 5.669 x 10~8
W K~* m~2 [3]. Experimental measurements are in close agreement with this number. The
generally recommended value of ¢ for radiation calculations is (Table A2):

o =5.73x10" WK *m2=137%10"2cals ! K *cm2
=0.173 x 1078 BTUR ! R™*fi~2,

" where R represents degrees Rankin (see Table Al).

Example 13.1.1

The heating element of a laboratory furnace consists of a graphite slab heated electrically
to 1000°C. If it is assumed that the graphite slab acts as a black body radiator, calculate
the total emissive power of Lhe heating element and the wavelength at which maximum
radiation occurs.

B \i ~ On the basis of the Stefan-Boltzmann law of radiation (see (13.1.6)), we calculate

Wy = 1.37 x 10712 x 12734 = 3.598 cals~! cm™2.
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Also, from the Wien displacement law (see (13.1.4)), the wavelength of maximum
emission is
_0.2808

max — srmn — W 22 = 4. i .
A 1973 0.000228 crn = 2.28 microns

13.2. EMISSIVITY AND ABSORPTIVITY

We defined a black body as one that absorbs all the radiation reaching its surface. It
may also be stated that the monochromatic emissive power of a black body is expressed
by Planck’s law (see (13.1.2)) and the total radiant energy flux by the Stefan-Boltzmann
law (see (13.1.6)). However, most surfaces do not absorb all the incident radiation; also,
the radiation emitted at a certain temperature and wavelength is less than predicted by the
Planck law. The deviation of a surface from black-body behavior is expressed by means of
its monochromatic emissivity which is defined as follows:

o = W, _ m.c. emissive power of non-black body at A, T
o Wg,  mc. emissive power of black body at A, T

(13.2.1)

Emissivity is a function of wavelength and may also depend on the temperature of a
body and the angle of the emitted radiation. Theoretically, its value may range from unity
to zero. Similarly, the monochromatic absorptivity of a body is defined as the fraction of
incident radiation that is absorbed by the body:

__ radiant energy absorbed by non-black body at A, T
" incident radiant energy on non-black body at A, T

(13.2.2)

In general, the monochromatic emissivity of metals decreases with increasing wave-
length while the reverse occurs with non-metals. Emissivity is not a unique property of a
material but depends greatly on the condition of the surface. This is illustrated by Fig. 13.3
which shows that aluminum with “commercial” finish has a higher emissivity than polished
aluminum. The variation of emissivity with wavelength for some non-metallic materials is
shown in Fig. 13.4.

When the radiant energy absorbed and also emitted from a surface does not depend on
orientation, i.e., the radiation is diffuse, the absorptivity and emissivity are equal:

E)x = ¥y, (13.2.3)

The above equation is called the Kirchoff law.

Bodies for which the emissive power is independent of direction are called diffuse
emitters. We can also define the directional absorptivity of a surface as the ratio of radiant
energy absorbed to the total radiant energy incident on the surface from a given direction.
Similar considerations apply to the directional reflectivity of a surface. Figure 13.5 illustrates
the difference between specular and diffuse emitters. In the case of a specular reflector, e.g.,
a mirror, the intensity of the reflected beam is zero except at a certain angle which is called
the specular angle. On the other hand, for a diffuse reflector, the incident beam is reflected
uniformly within the hemispherical space above the surface, irrespective of the angle of
incidence. '
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Figure 13.3. Typical emissivity and absorptivity distributions with wavelength for metallic
surfaces.
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Figure 13.4. Typical emissivity and absorptivity distributions with wavelength for non-metallic
surfaces. ' ' '

Most real surfaces range between these two extremes. It may be said qualitatively that
smooth, well-polished surfaces act as specular reflectors while rough surfaces are diffuse
reflectors.
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Figure 13.5, Illustration of specular and diffuse reflectance.

It is obvious from the definition of a black body that its emissivity and absorpti»;ity are
equal to unity: '
epr=oagx=1 (13.2.4)

For a non-black body which does not transmit radiation (e.g., in contrast to glass which
allows some radiation to be transmitted through it), the fraction of incident radiation that
is not absorbed must be reflected away from the surface (e.g., a mirror reflects radiation).
Therefore,

r=1—ay, (13.2.5)
where p, is the monochromatic reflectivity of the surface. Most solids and inorganic melts
are opaque and therefore do not transmit radiation. A high-temperature process where the
transmission of radiation is important is the glass melting furnace. For transmitting materials

prtart+n=1 (13.2.6)
where 7, is the transmittance and depends both on the type of material and its thickness.

13.3. TOTAL RADIATION PROPERTIES

The total rate of radiant energy emitted from a surface is obtained by summing the monochro-
matic energy contributions over the entire spectrum of wavelengths:

W= /Wid; = -/E,\WE‘AdA- . (13.3.1)
0 1] .
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By combining (13.3.1) with (13.1.6), we obtain the following definition of the total
emissivity of a surface:

exWpg 2 dA eaxWg vdA eaWg ,dA
B B BA
0 0 0
£=—= = — = — . (13.3.2)
Wy oT4
W§ ,dA *
T

Introducing the definition of the total emissivity in (13.3.1), we obtain
W =eoT?. ' (13.3.3)

The total emissivity is a function of the material, its temperature and surface condition.
The total absorptivity is defined in a similar way as follows:
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where ¢;  is the monochromatic radiant energy flux ammving at a surface of absorptivity a.

It should-be noted that while the total emissivity depends only on the properties of
the emitting surface (type of material, roughness, temperature), the total absorptivity is also
dependent on the spectral distribution of the incident radiation. Consequently, Kirchhoff’s
law on monochromatic emissivity and absorptivity (see (13.2.3)) cannot be generalized for
the total radiation properties. -

13.3.1. Definition of a Gray Body

There are many real surfaces which are not black bodies but exhibit a similar distribution
of emissive power with wavelength, with the exception that the monochromatic energy
flux is smaller than the comresponding black-body flux (Planck radiation law, see (13.1.2)),
by a fixed ratio; in other words, their monochromatic emissivity and absorptivity remain
constant with wavelength. Such surfaces are called gray bodies. The assumption that a
surface behaves like a gray body is made frequently since it allows the use of total radiation
properties which are more readily available in the literature than the monochromatic radiation
properties. Many of the electrical non-conductors and semiconductors can be considered to
belong to this class,

Example 13.3.1

The variation of monochromatic emissivity of a chromivm plate with wavelength is as
follows:

A (microns) 09 20 35 50 80
£ 073 064 054 049 041
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Figure 13.6. Comparison of monochromatic emissive power of a black and a gray body at
1100 K. ‘

Calculate the total emissivity of this surface at 1100 K.
The monochromatic radiation from a black body, in the wavelength range under consid-
eration, is calculated from (13.1.2) and is shown in Fig. 13.6. By multiplying the black body

radiation by the above corresponding emissivities, we obtain the monochromatic emissive
power of the chromium surface:

W;\ = EAW.,B Y
which is also plotted in Fig. 13.6. Since the wavelength range of significant emission extends
from 1.to 10 microns, the total radiant emissive power is
A=10p
£ ,\W_'B, AdA
A=1p
This integral is represented by the area under the W), plot of Fig. 13.6 between limits

1 < XA < 10 and is found to have the value of 1.06 cal s~! em~2. Finally, by using. the
definition of the total emissivity (see (13.3.2)) we obtain

e 1.06
T 1.37 x 10~12 x 11004

= 0.53.

13.3.2. Values of Total Emissivity

A tabulation of the total emissivities of a number of materials is presented in Table 13.1;
for a more extensive tabulation of radiative properties, the reader is referred to Siegel and
Howell [2]. In general, clean, highly polished metallic surfaces have very low emissivities
which can be increased by coating or the formation of oxide films. The emissivity of metallic
surfaces increases with temperature, parily due to the fact that the monochromatic emissivity
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of metals decreases with increasing wavelength. Nonmetallic materials are characterized by
high emissivities in the infrared portion of the spectrum.

Table 13.1 shows that there is considerable variation in the total emissivity of some
materials, even over a narrow range of temperature. The reason for this is that it is very
difficult to characterize fully the roughness of different surfaces prepared by different in-
vestigators, Caution should be exercised in using emissivity data, particularly in the low
ernissivity range, for calculations where a high degree of accuracy is required. '

Example 13.3.2

Compare the heat losses by radiation and convection per unit area from the top surface of a
horizontal steel slab at 200 and 1200°C. It may be assumed that the emissivity of the steel
slab at both temperatures is 0.6 and the temperature of the atmosphere above the plate (T,)
is 20°C. :

The radiant flux is obtained from the Stefan—Boltzmann radiation law (see (13.1.61 )
for the given value of emissivity:

at200°C, ¢, =W =eo(T? - T2)
=0.6 x 1.37 x 10™*? x (473* — 293%} = 0.035 cals~} cm™2
at1200°C, g, =0.6 "= . x 1.37 x 10712 x (1473* — 293%)
=3.86 cals~! cm 2.

The convective loss can be calculated from the heat convection equation (Chapter 12):
% = (T, — To). ' (13.3.5)

In this case, the heat transfer coefficient h may be computed from the following empirical
equation for heat transfer to air from an upward facing horizontal plate:

h=5x1075(T, ~ Tp)**, (13.3.6)

where all units are in the-metric system. By combining the above two equations, we obtain
the heat loss by convection:

at 200°C, ¢, =5 x 107° x (200 — 20}''*®* = 0.033 cals ' cm~2,

at 1200°C, g. =5 x 107% x (1200 — 20)''%® = 0.346 cals~! cm™2.

The above calculations show that at 200°C the radiative and convective losses are compa-
rable, while at 1200°C the radiative loss is nearly ten times greater.

13.4. RADIANT HEAT TRANSFER BETWEEN BLACK-BODY SURFACES

Up to this point we have considered the special case where a single surface either emits
or absorbs radiant energy from the environment. However, in an enclosure consisting of
a number of surfaces, the ner radiation emitted by one surface depends not only on the
temperature and emissivity of that surface but also on the radiation received from all other
surfaces in the enclosure. Thus, the radiant energy/time emitted by surface / and intercepted
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Table 13.1. Total Emissivities of Various Surfaces

Surface Temperature, °C Emissivity®
Alumintum
bright foil - 20 0.04
polished plate 100 0.09
heavily oxidized 100-540 0.20-033
Chromium, polished 20-1100 0.08-0.40
Copper
polished 20-260 0.04-0.05
black oxidized 30-600 0.78
molten copper 1080-1280 0.16-0.13
" casted and heated 880-1000 0.60-0.70
wrought, polished 40-250 0.28
steal sheet, oxidized 20 0.66
oxidized at 600" 200-600 064078
Iron oxide 2001200 0.85-0.59
Steel plate, rough surface 20-370 0.94-097
Molten surfaces _
copper 1080-1280 0.16-0.13
iron for casting 1300-1400 0.29
steel 15001600 0.42-0.53
Lead
polished 30-300 0.06-0.08
rough, unoxidized - 40 0.40
Silver, polished 100 0.02-0.05
Tantalum filament 1300-3000 0.19-031
Thorium oxide 270-830 0.58-021
Commercial tin-plated sheet 100 0.05
Tungsten filament 25-3300 0.032-0.35
- Zinc, comm. grade,
polished 220-320 0.045-0.053
heated in air at 400° 400 - 0.11
galvanized sheet 100 021
Alumina (99.5-85% AL Os; 0-12% S5i0,; 1000-1600 0.50-0.18
(-1 Fe,0,), 100-10 grain size :
Alumina-silica (80-58% Al0s, 1000-1600 0.61-0.43
16-185i0,, 0.4Fe,05)
Fireclay brick 1000 0.75
Carbon
filament 1000-1400 0.53
rough plate 100-500 0.77-0.72
Silicon carbide (87%SiC; 2.3 g cm™) 1000-1400 0.92-0.82
Glass (pyrex, lead, and soda) ' - 250-550 0.95-0.85
Magnesite brick 1000 0.38
Quartz, fused 20 093

*Temperatures and emissivities appearing in pairs and seParated by dashes correspond

and can be interpolated linearly.
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Flue gases

Figure 13.7. Dlustration of radiation surfaces in a furnace enclosure.

by surface 2 will be denoted by 1.2 or, for short, @13. The same notation will be used
for radiant energy fluxes (e.g., ¢12, 421, - ..} and for the view factors to be discussed in the
next section.

13.4.1. Geometric View Factors

In order to calculate the exchange of radiant energy between surfaces, it is convenient to
consider a fully enclosed system for which all radiant energy emitted from a given surface
can be accounted for. If the system under consideration is not enclosed physically, we may
“construct” imaginary surfaces so as to complete the enclosure. For example, in the case
of an open window in a furnace, where all the incident radiation is lost from the enclosure
(i.e., there is negligible back radiation from the environment), it may be assumed that the
open window corresponds to a black body surface at zero absolute temperature. _

Let us now consider an enclosure consisting of n surfaces (Fig. 13.7) and assume that
the radiation flux within the enclosure is diffuse, that is, it has no angular dependence. If
A1 and As are two of the surfaces in this enclosure, the geometric view factor between
them, Fy3, is defined as the fraction of radiation emitted by surface A; and intercepted by
surface Aj; the first subscript represents the emitting surface and the second the intercepting.
In radiant heat transfer equations, the emitted energy is shown as a positive term and the
incident energy as negative. _

Stating the above definition in more general terms, the view factor, Fy;, between two
surfaces A and 4; in an enclosure, represents the fraction of radiation emitted by surface
Ay, and intercepted by surface A;. The geometric view factors depend only on the geometry
of the system and are not affected either by the temperature or the emissivity of the surfaces,
provided that the assumption of diffuse radiation is satisfied.

For a mathematical definition of the view factor, let us consider two surfaces, 4; and
A2 located at a distance r apart in an enclosure (Fig. 13.8); each surface emits radiation
over the entire hemisphere above it. Let us now consider the infinitesimal area elements
dA; and dA; on the two surfaces; if the angles formed by the connecting line with the
normals on the two surfaces, n;y and ng, are §; and 2, respectively, it can be shown by
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Figure 13.8. View factor between two infinitesimal surfaces separated by distance 7.

solid geometry that the fraction of the hemispherical radiation emitted by surface J and
intercepted by surface 2 is represented by the following equation:

1 7 Feospy cos
COSB Cos
FAI_..A, = -14-_1.// ——_1-11‘;‘.‘2_—2dA1 dAg. (13.4.1)

A similar equation is derived for the reverse situation:

Ay
Fayny = f ] cos Py °°Sﬁ 2 dA, dAg. (13.4.2)
0

Comparison of (13.4.1) and (13.4.2) shows that the following reciprocity rule applies
to view factors:

A1Fios = A F 4, (13.4.3)

or in more general form:
AiFy; = AjFj5. (13.4.4)

The reciprocity rule may also be proved by the following reasoning: Consider two
black-body surfaces in an enclosure in which all other surfaces are also black and at absolute
zero temperature (therefore, ¢ = 0); thus, the amount of radiation emitted from surface /
and intercepted by surface 2 is expressed as

Q12 = 0 A1 Fio T, - (13.4.5)
Also, the amount of radiation from surface 2 intercepted by surface I is

Q21 = 0 A Fp1 T4, (13.4.6)
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Surface 1

Figure 13.9. Perpendicular rectangles in a fumace enclosure,

Therefore, the net heat transfer by radiation from surface / to surface 2 is
Q12 = 0'A1F12Tf — 0’A2F21T;. (13.4.7)

The above equation is true for all values of 77 and 7%. Obviously, when T} = T the net
transfer of radiation between the two surfaces must be zero, and (13.4.4) yields the required
proof:

AFio = AgFy. (13.4.8)

Considering the definitions of the radiation enclosure and of the view factor, we can
conclude that all radiation emitted from one surface, 4;, must be intercepted by some or all
of the other surfaces in the enclosure. Therefore, we may write

Zij =1, (13.4.9)
—

where k is any one of the n surfaces in the enclosure.

13.4.2. View Factor Calculations

As discussed earlier, view factors are calculated using the principles of solid geometry.
Fortunately, the view factors for many geometric configurations have been worked out and
published in the literature [2,5]. In this section, we shall present some of these formulae
and describe a method for using view factors available in the literature to compute the view
factors for other configurations. This technique is called “view factor algebra.”

As an illustration, consider the geometric configuration of Fig. 13.9. In this case,
surface 4 is equal to surface 2 plus surface 3. Mathematical formulae are available for the
view factors between the perpendicular surfaces 7 and 2 and also between suiface [ and 4,
However, we need to find the view factor between the surfaces 1 and 3. Consideration of
the geometry of the system (Fig. 13.9) shows that the following relationship must be true:

A1 Fyg = AvFis + Ay Fys.
Therefore, we can obtain the value of the unknown Fj3 by subtracting the known values

of .F14 and Fm:
Fi3 = Fq4 — Fr2.
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Surface 3

Figure 13,10. Parallel disks in a furnace enclosure.

Fiz=4la - fo- 45)¢ )

where:

Figure 13.11. Examples of derived formulae for view factors between surfaces.

Another example of the use of this technique is presented in Fig. 13.10; the view factor
between the bottom disk 3 and the top ring 2 is obtained by subtracting the known view
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Figure 13.12. Calculated view factors between two perpendicular rectangles.

factors for disk-to-disk radiation:
Fyy = Fyy — F3y.

Examples of the formulae derived for the geometric factors between perpendicular
rectangles and between parallel disks are shown in Fig. 13.11. Calculated values of the
view factors between perpendicular rectangles are plotted in Fig. 13.12.

13.4.3. Radiation Within a Black-Body Enclosure

Consider an enclosure (Fig. 13.13) which is divided into n isothermal black-body surfaces,
Ay, Az, ..., Ay, maintained at temperatures T4, 75,. .., T, respectively. The net radiation



192 N. J. TREMELIS

Figure 13.13. Black-body enclosure of r isothermal surfaces.

from surface A; is the emission from the surface £ minus the sum of the incident radiation
from all other surfaces j:

Q= 0 AxTE — oAk Y Fii T}, (13.4.10)
i=1

By using (13.4.9), we can rewrite the above equation as a generalized rate equation for
radiant heat transfer between black-body surfaces in an enclosure:

g_: —q=0> By (TE-TH). | (13.4.11)
=1

It should be noted that the sum of the view factors includes the seif-view factor Fiy, that
is the radiation received from the surface itself. This is possible only when the isothermal
surface k is concave, e.g., in the case of a concave roof of a furnace, or when it is assumed
to consist of more than one planar surface.

Equations (13.4.10) and (13.4.11) are used in radiation problems to determine either the
required heat input to a particular surface, @, or the temperature of a surface on the basis
of the known fluxes and temperatures at the other surfaces of the enclosure. For example,
let us consider a black-body enclosure consisting of n surfaces; the temperature is specified
at (n — 1) surfaces and the net input radiant flux is specified at the remaining surface, Ag.
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It is required to determine the temperature at that surface, 7. By subtracting the self-view
function of radiation o Fi. T* from the sum in (13.4.11) and solving for T}, we obtain

(ae/o)+ 35 BT}
T4 — =Tk
* 1— Fy

(13.4:12)

One of the most common situations encountered in furnace enclosures is that one
surface may be considered as a radiation source (e.g., flame, arc, heating elements) and
another as a radiation sink (e.g., molten bath surface, metal strip in an annealing furnace).
In comparison to these two types of surfaces, the radiant heat emitted or absorbed from
all other surfaces may be assumed to be negligible; such surfaces are usually lined with
refractory insulation and the heat losses by conduction through the wall may be small in -
comparison to the source-to-sink radiation level in the furnace.

Under these conditions, a furnace enclosure may be assumed to consist of a “source”
surface, a “sink’" surface, and a number of “zero-flux" surfaces which re-radiate (i.e., reflect)
to the enclosure nearly all of the incident radiation.

If we designate these three types of surfaces by A; for the source, As for the sink, and
Ap for the “zero-flux” surfaces, we have for a black-body enclosure

Qi = Firo AW(T{ — T§) = Qpe = FrooAr(Th - T3), (13.4.13)

where Q1 g is the radiation from the source surface / intercepted by surface R and Qgo the
re-radiation from surface R to the sink surface 2. The reciprocity rule yields

FmAR = FQRAg. (13414)
Substituting from (13.4.14) into (13.4.13) and solving for T’r, we obtain

T4 — F]_RAle + FgRAgT;
R FirA1 + FopAs

(13.4.15)

Of course, part of the radiation leaving A, is intercepted directly by A,; therefore, the
net flux between 4; and As consists of two terms: '

Qu2,net = Fr20 41 (T} — T3) + Firo AL(TY — Th)- (13.4.16)

If the temperatures 77 and T are specified, T can be calculated from (13.4.15); this
value is then used in (13.4.16) to yield the required net heat input, Q12 5et, to the source
surface.

The use of the above equations is illustrated in the following examples.

Example 13.4.1

"~ The enclosure of an annealing fummace can be divided into three radiating surfaces at tem-
perature 73 = 1500 X, 75 = 1000 K, and T3 = 600 K, respectively. Assuming black-body
conditions, calculate the radiant heat flux from surface 7, if the view factors are o

Fyy = 0.15, Fip =025, Fi3 =06.
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To solve this problem, we use (13.4.11):

g1 =1.37 x 1072 [1500* — 0.15 x 1500* — 0.25 x 1000* ~ 0.6 x 600%]
=5.446 cals~em™Z, Y

-Example 13.4.2
The following conditions are specified at the four black surfaces of an enclosure:

cat Ay, 71 =2000 K, at Ay, q2=0,
at As, T3 = 1000 K, at Ay, Ty = 293 K.

The zero flux specified at surface 2 signifies a condition of “perfect insulation” behind
this surface., Surface 4 is obviously a window or other opening to the atmosphere. The
calculated view factors are given as :

Fo1 = 0.2, Foo = 0.15, Fp3s =04, .F24 = (.25,
Fy =0.5, Fyp =0.2, Fy3 =0.3.

It is required to calculate the net heat flux by radiation at the surface 4.
We may proceed by calculating T from (13.4.12):

i 02X 2000* + 0.4 x 1000* + 0.25 x 293*
2 1-0.15

15 = 1435K. .

The net flux at surface 4 is then computed by using (13.4.11):
qs = 1.37x10712[293* — (0.5 x2000%*+0.2 x 1435* 0.3 x 1000*)] = ~12.52 cals "l em 2.

The negative sign indicates that the radiation received at surface 4 is greater than the
radiation emitted. In this case, the net radiant flux at surface 4 represents a heat loss by
radiation through a furnace port. It is also interesting to note that surface 2, which has a
zero net flux, nevertheless contributes to the net flux to surface 4.

13.5. RADIATION BETWEEN GRAY-BODY SURFACES

As discussed earlier, in contrast to black bodies where the emissivity is assumed to be unity,
part of the incident radiation on real surfaces is absorbed and part is reflected. In order
to develop the equation for radiant heat transfer in this case, let us make the following
simplifying assumptions: _
a. The surfaces are gray-body so that emissivity and absorptivity are equal and
independent of wavelength.
b. The incident, emitted and reflected radiation are independent of direction.
- ©. The radiating surfaces are isothermal and the radiant flux is uniform along
each surface.
Despite these simplifying assumptions, the radiative exchange within an enclosure of
real surfaces is very complex: Radiation leaves a surface, travels to other surfaces and part
of it is reflected many times before it is absorbed totally. Since it is not possible to “follow”
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Lith surface
wiih area Ay

Q = A

Figure 13.14. lustration of enclosure of = surfaces (lop) and of fluxes entering or leaving
surface k (boltom).

the beams of radiation, it is convenient to describe quantitatively radiant heat transfer by
means of the net radiation method, originally proposed by Hottel [7].

Let us consider an enclosure of 7 surfaces in an enclosure {Fig. 13.14). The bottom
part of Fig. 13.14 shows the various fluxes entering or leaving the surface &k of area A; in
the enclosure. The net heat to surface k, Q, can be expressed -as follows:

Qr = Argr = Arlgr,0 — Gri)s (18.5.1)

where g;. , represents the total radiation [eaving the surface k& (“outgoing” radiation) and
is called the radiosity of the surface k. The radiosity consists of two terms: the radiation
emitted directly from surface k, according to the Stefan—Boltzmann law, and the reflected
radiation received by surface k from all other surfaces in the enclosure:

Gk,o = Ex0TE + Pray,i, (13.5.2)
where py is the reflectivity of surface k and g ¢, represents the incident (i.e.,“incoming”)

radiation on surface A from all other surfaces in the enclosure. As discussed earlier (see
(13.2.5)), for opaque, gray surfaces, '

pr=1l—ar=1-¢ (13.5.3)
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Therefore, (13.5.2) can be written as
ko = exo TR + (1 — ex)gs,i- (13.5.4)

The incident radiation on surface k, gy ;, is equal to the sum of radiations received at
surface k from all other surfaces in the enclosure:

Argri = FlrA1G10+ ForAcqo o+ Far As@aot. - A FrrArgr ot . .+ FjrAjg5,,. (13.5.5)
However, the reciprocity rule for geometric factors (see (13.4.3)) yields
F]_kAl = FklAk; szAz = FkgAk; ...... 3 ijAj = ijAk.

Therefore, (13.5.5) can be written so that the only area appearing in all terms on both
sides of the equation is Ay:

Arri = FerArq ot FroArge o+ FraArgs o+ . A Frr Ar@r,o+. . .+ Fij Argio, (13.5.6)
or

Qk,i = Zijq_f,o- (13.5.7)
i=1

We now have two equations ((13.5.4) and (13.5.7)) for gx:;. By combining them, we
eliminate g ; and obtain two equations for the ner heat radiation from surface Ag:

—_Ek 4
®=1_, (cT¢ — qr0) (13.5.8)
and .
Ok = Gko— ) FrjGio- .  (13.5.9)
i=1

It can be seen that (13.5.8) and (13.5.9) can be written for each of the n surfaces in the
enclosure. This will result in 2n equations with 2% unknowns; the radiosities go from €ach
surface will amount to n of the unknowns, while the remaining n unknowns will consist of
various g and T, depending on the boundary conditions of the problem.

For example, for a gray-body enclosure of three surfaces, (13.5.8) yields the following
three equations:

@10 = 1077 + (1 — &1)(Fliq,0 + Flage,0 + Fl3gs,o),
2,0 = 20T5 + (1 — e2)(Fo1q1,0 + Foage,0 + Fa3gs,0), (13.5.10)
B30 = £30T5 + (1 — e3}(Fa1q1,0 + Fage o + Fi3g3,0)-

This system of equations can be solved easily by means of matrix algebra, as illustrated
in the following example.

Example 13.5.1

An experimental furndce has the approximate geometry of a vertical cylinder. If the enclo-
sure is assumed to consist of the three isothermal surfaces A1, Ay, and Aa, calculate the net
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heat flux at each surface for the following conditions: 4; = 3 m?, A =3 m?, 4; =12 m?
(cylindrical wall), 71 = 1400 K, 75 =900 K, T35 = 300 K; ¢ = 0.8, 25 = 0.4, 3 = 0.7;
Fn =0, ng—o andF12—038

Using the reciprocity rule (see (13.4.4)) and (13 4.9), we can calculate the remaining
view factors:

F13 =1- F12 —_ .F11 = 0.62, F23 =1- Fgl — F22 = 0.62,
Ay 3

) =F = — =0

31 = Fa— As =0.65 x 12 0.155
F30 =0.155, F33=1— F33 — F35 = 0.69.
43,5432
A" Substituting the numerical values of emissivities, temperatures, and view factors in

(13,4220), we have three equations and three unknowns, g0, §2,0, and g3 . By collecting
all the unknown radiosities on the right-hand side of the equation and grouping the ¢y p.
2,0, and ¢3¢ terms in three terms, we obtain:

e10T¢ =1 — (1 —&1}Fu1)qr0 — (1 —€1)Fizga,o — (1 —I51)F13Q3,o,
£20Ty = —(1—e2) Foiqu,o + [1 — (1 — £2) Pas]go,0 — (1 — £2) Fhags,o, (13.5.11)
e30Ts = —(1 — &3)Fnqro — (1 — €3)Fa2g2,0 + {1 — (1 - €3) F33]g3,0-

This problem in matnix aigebra can be solved using the matrix soluﬁcn facility of the
Lotus 1-2-3 [10], or a similar spreadsheet program, as follows. The system of equations
(13.5.11) can be expressed in matrix form as

A=CX,

where A represents the known terms on the left-hand side of (13.5.11), C the coefficients
of the unknown radjosities and X the three unknown radiosities. The coefficients A and C
are computed from the known emissivities, temperatures and view factors and are entered
in cells B14-B16 and C14-E16, respectively (Fig. 13.15). The Data, Matrix, Invert facility
of the LOTUS 123 program is then used to invert the coefficients C and place the results of
the inversion in cells C18-E20. We now use the Data, Matrix, Multiply facility of LOTUS
123 to multiply the coefficients A by the inverted coefficients C:

X=%xm

and yield the values of the three unknown radiosities (cells G14-G16, Fig. 13.15j. The net
heat flux at each of the three surfaces is thus calculated to be:

q1 = 4.3705, gz =1.4955, g3 =0.3749, all in cals™? cm™2,
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A B C D E F G
1
2 Stefan-Boltzmann constant: 1.37E-12
3 Sarf. 1 Surf.2 Surf.3
4 Area, m2 3 3 12
5 Tenp., K 1400 200 400
6 Emissivity 0.8 0.4 0.7 .
7 Calculated } Sum of F
8 View factors, F: for Al, etc.
9 11, 12, 13 0 0.38 0.62 1
10 21, 22, 23 0.38 0 0.62 1
11 31, 32, 33 0.155% 0.155 0.69 1
12 Calc’d radiosities:
13 Temp, K A coeff’t’s C coeff’t’s cal/(= cm2)
14 1400 4.2)03936 1 -0.076 -0.124 q1,0: 4.370543
15 900 0.7190856 -0.228 1 -0.372  9,0: 1.495501
16 400 0.0280576 -0.0465 -0.0465 0.793 To: 0.374932
17 Inverted C coeff’t’s: .
18 1.029375 0.087628 0.202068
19 ’ 0.262886 1.044678 0.531170
20 0.075775 0.066396 1.304029

Figure 13,15. Lotus 1-2-3 screen after solution of matrix problem of Example 13.4.3.

Example 13.5.2

Derive an equation for the radiant heat transfer between two infinite parallel plates at tem-
peratures 77 and 15 respectively, when T} > T5.

Since all radiation leaving plate I will reach plate 2, Fio = F» = 1. Therefore,
{13.5.8)-(13.5.9) are expressed as follows for plate I: '

€1

h=7T €1 (oTF —a1,0) » (13.5.12)
Q=00 — @20 (13.5.13)
and for plate 2: |
—_&2 4 _
%=1 (0T ~ @) | . (13.5.14)
%2 = g2,0 — QL0 _ (13.5.15)

Inspection of (13.5.13) and '(13.5.15) shows that in this case g3 = —gq, i.e., all heat
added externally to surface I is removed at surface 2. Solving (13.5.12) for g, , and (13.5.14)
for gz 4, we obtain: '

(1 — 81)

Qo= oTf - ——"a, (13.5.16)

and

(1 - 52) (1 - 52) "

= (13.5.17)

g2,0 = 0T5 — g =0T3 +
We can now substitute for q; o and g2, in (13.5.13) to obtain the following expression

for ¢1 and ga:

_ o(T} —T3)

QL=—f=F—7 (13.5.18)
o + i 1
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In a similar way, it can be shown that the radiant heat transfer between the shells of
two concentric spheres is expressed as follows: '

Ao(T} — TF)
1 A !
std(2-1)

where A; is the source and A, the sink surface,

1=

(13.5.19)

13.6. RADIATION THROUGH EMITTING AND ABSORBING MEDIA

In the preceding sections, we discussed radiation between surfaces separated by a medium
that does not absorb or emit radiation. This assumption is justified for systems under vacuum
or when the intervening medium consists of monatomic or symmetrical diatomic gases, such
as helium, argon, nitrogen, oxygen and hydrogen.

However, when the radiation enclosure contains complex molecules, such as COs,
H>0, hydrocarbons, or fine particles, as in the case of luminous flames and fiash reactors,
the furnace atmosphere participates in the radiation process.

Radiant heat transfer calculations in such media are more complex because the emis-
sion and absorption characteristics of gases are strongly dependent on temperature and
wavelength. In this section, we shall describe the basic concepts and some approximate
methods for calculating radiant heat transfer in emitting and absorbing media.

13.6.1. Radiation Between a Surface and a Gray Gas

Let us consider a gray-body enclosure at temperature T, which contains a gray gas at a
higher temperature T,;. Experimental studies have shown that the net radiant flux received
at the surface of the enclosure from the gas may be expressed as

gr = €40(e, Ty — 0g,sT2), (13.6.1)

where ¢/, is defined as the effective emissivity of the solid and is approximated by

1
o =Bt D (13.6.2)
2
and &, is surface emissivity, g, is effective gas emissivity, and , , is effective gas absorp-
tivity.

The value of the gas emissivity depends on the temperature, pressure and gas compo-
sition of the system, as well as-the width or other characteristic length, L, of the enclosure.
Values of ¢, have been determined experimentally and typical examples are shown in Fig.
13.16 for water vapor and Fig. 13.17 for CO; [6]. In these plots, the parameters py,0L,
etc. are the product of the partial pressure of the radiating gas and the characteristic length
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Figure 13.16, Emissivity of water vapor mixed with non-radiating gases at 1 atm total pressure
as a function of temperatore (after [1]).

of the enclosure. The characteristic length of some typical enclosures is shown in Table
13.2.

The values of £, shown in Figs. 13.16-13.17 apply for system pressure near one
atmosphere. For other values of total pressure, the values of €, from these plots must be
multiplied by the pressure correction factor which is plotted in Fig. 13.18 for HoO-containing
atmospheres and in Fig. 13.19 for CO; atmospheres [1]:

€g,p = Cuég OF €45 = Cet,. (13.6.3)

In the case of gas mixtures, e.g., a combustion gas containing both CO; and HyO, the
appropriate emissivities are not simply additive and a further correction is required. For
example, Fig. 13.20 [4] shows the experimentally developed correction factor for a mixture
of these two gases. In this case, the overall emissivity of the gas mixture is calculated as
follows: _

Etot = €4,C0; + €¢,H,0 — A, (13.6.4)

where Ac is the correction factor for the mixture.

Once the emissivity of the gas atmosphere, &4, has been determined according to
the above procedure, the effective absorptivity of a CO,- and H3O-containing gas can be
calculated by means of the following empirical correlation:

T, 0.65
Qg = Eg -’IT_, . (13.6.5)
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Figure 13.17. Emissivity of carbon dioxide mixed with non-radialing gases at 1 atm total
pressure as a function of temperature (after [1]).

Table 13.2. Characteristic Length for Some Enclosures

Shape of Characteristic
enclosure length
Sphere 0.6 x diameter
Short cylinder ( = d) 0.6 x diameter
Long cylinder 0.9 x diameter
Rectangle 1.06 x length of short side
Other shapes 0.75 x volume/surface

Example 13.6.1

The exhaust gases from a furnace contain 10% CO; and 13% H,O. The gases, at 1100°C
and atmospheric pressure, flow through a cylindrical ceramic duct (2.66 m 1.D., 20 m long)
the wall of which is at 300°C. Calculate the radiant heat flux at the wall if the surface
emissivity is 0.8.
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Figure 13.18. Correction factor for the effect of pressures other than 1 atm on the emissivity
of water vapor atmospheres (after [1]). :
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Figure 13.19. Correction factor for the effect of pressures other than 1 atm on the emissivity
of CQo atmospheres (after [1]).

We first calculate the effective emissivity of the surface from (13.6.2):

;0841
-9

= 0.9.

Also, from Table 13.2, the characteristic length of the duct is I = 0.9 diameter = 2.4
m. For pco,L = (1 x 0.1) x 2.4 = 0.24, we obtain from Fig. 13.17: g4 = 0.13; since the
system is at 1 atmosphere, there is no pressure correction to be made. Similarly, for py,o0L
= (1 x 0.13) x 2.4 = 0.312, we obtain from Fig. 13.16: ¢, = 0.18. Finally, Fig. 13.20
shows that the correction for the superimposed radiation of CO; and H2O is

Ae = 0.045.
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Figure 13.20. Comreclion factor for emissivity of superimposed radiation from CQ2 (p¢) and
H20 (pw) atmospheres (after [1]). '

Therefore, the total gas emissivity is
Emix = £C0; + €H,0 — HAe = 0.13 4+ 0.18 — 0.045 = 0.265.

By means of the empirical correlation (13.4.5), we can now calculate the effective
absorptivity of the gas:

Tg 0.65 1373 0.65
g s = Eg (T,) = {.265 ﬁ = 0.47.

We now have the numerical values of all the parameters in (13.6.1). Solving, we obtain

g = 0.9 x 1.37 x 10712(0.265 x 1373* — 0.47 x 573') = 1.10 cals™ 1 em 2.

13.6.2. Radiation from a Cloud of Particles

We will conclude this chapter with a brief discussion of the emissivity of luminous flames
and clouds of particles. On the basis of work by Hottel and Broughton on the monochromatic
emissivity of luminous flames [9] and the theory of probability, Haslam and Hottel [5] de-
rived the following equation for the emissivity of a cloud of particles of known concentration
and particle size: '

gc=1— g M lAp (13.6.6)

where . is the emissivity of a cloud of particles; ¢, is the surface emissivity of a particle;
np is the number of particles per unit volume of cloud, m™3; L is the thickness of the
cloud, m; A, is the average cross-sectional area of the particle (e.g., for spherical particles
of diameter dy, wdZ/4), m®,
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If the particles in the cloud are not uniform in size, the surface mean diameter is used
to calculate the particle area:

it (2
i N

(13.6.7)

Example 13.6.2

Copper concentrates ate charged with oxygen-enriched air (35700 N m® per hour) in a flash
smelting reactor (6.0 m diameter) at the rate of 61 tons per hour. The average particle size
is 70 microns and the particle density and emissivity are 5.5 g cm™3 and 0.8, respectively.
Calculate the particle “cloud” emissivity at 1000°C.

We first calculate the ratio of concentrate to air at 1000°C: 61x108/(35700x1273/273)
=366 g of particles per m® of reactor space. Also, we calculate the number of particles per
gram of concentrate, on the assumption that all particles are spheres of 70 microns diameter:

Number of particles/g =(cm?® / g) x (number of particles/cm®)
=(1/5.5) x [1/{x x 0.007%/6) = 1.01 x 10E.

Therefore, the number of particles per m® of reactor space is
n, =366 x 1.01 x 10% = 3.7 x 108,

The cross-sectional area of a particle is calculated to be 3.85 x 10~ m?. We now can
calculate the particle “cloud” emissivity from (13.6.6):

€ = 1 — 8—0.8)(3.7):108)(6)(3.35!(10_9 = 0.9989.
It can be seen that in this case the contribution of the particles to the emissivity of

the gas phase is very high. In an experimental reactor of 0.15 m diameter and at the same
particle “loading,” the cloud emissivity would be ODI}' 0.16.
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Mass Diffusivity: Steady State Diffusion

Most processes used for producing metals and other inorganic materials involve the transfer
of matter between phases. Some examples are:

a. In steel refining, two immiscible liquids, metal and slag (a silicate solution)
are brought in contact with the objective of transferring the impurities from
the metal, such as silicon, manganese, and phosphorus, to the slag phase.

b. In the formation of titaninm oxide films on a silicon substrate, by chemical
vapor deposition, an organometallic compound of titanium in vapor form
flows through a reactor where it is decomposed thermally to form a thin
TiOs film on the substrate. _

¢. In the “in-situ” mining of uranium and some other metals, an agueous solu-
tion is piped through boreholes into the ore deposit and the metal is trans-
ferred by leaching from the ore to the solution. In the surface plant, the
metal is transferred once more by chemical interaction between the aqueous
solution and an organic reagent (ion exchange or solvent extraction).

When two or more phases are brought into intimate contact in a closed system, mass
is transported between them until thermodynamic equilibrium has been established (Chapter
18); that is, when the chemical potential of any component is the same in all phases of the
system. Therefore, on the basis of thermodynamic equilibrium data, such as free energies
and activity coefficients, we can predict the endpoint of a particular chemical reaction or
physicochemical phenomenon, such as dissolution, vaporization, and so forth, ‘

However, in the design and operation of processes, it is also necessary to know the
rate at which equilibrium can be approached under certain operating conditions. The rate
of approach to equilibrium depends both on the chemical kinetics of the particular reaction
(Chapter 18) and on the mass transfer rate of reactants and products to and from the reaction
zone. Transport of materials to the reaction zone takes place by two.mechanisms:

a. There is a movement of molecules (or atoms, or ions depending on the
particular system) due to the tendency of chemical species to move from a
region of a high chemical potential to a lower one; ie., from a region of
high concentration to one of lower concentration. This mechanism is called
diffusion and will be discussed in this chapter and Chapter 15.

b. In fluid systems, mass can also be transported by mearis of the fluid elements -
as they move about, i.e., by convection. The combination of diffusion and
convection in fluid systems is called mass transfer and will be discussed in
Chapters 16 and 17. An example of mass transfer is the transport of oxygen
atoms through the boundary layer enveloping a burning particle of coal: It
is affected partly by the thickness of the boundary layer, which depends on

205
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Figure 14.1. Examples of mass transfer phenomena: a) Desulphurization of iron, b) reacting
gas bubble in deoxidation of anode copper, c) electrowinning of zinc.
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Figure 14.2. Concentration profiles for diffusion through a capillary as a function of time.

the flow conditions around the particle, and partly by the molecular diffusion
of oxygen molecules through the carbon dioxide film around the particle.
Figure 14.1 is an illustration of some examples of mass fransfer between phases.
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14.1. THE CONCEPT OF MASS DIFFUSIVITY

Materials consist of chemical species (molecules, atoms, ions). The rate at which a chemical
species diffuses from a higher to a lower concentration region depends on its mass diffu-
sivity. This is a property that depends both on the species and the medium through which it
diffuses; in the following discussion, we will represent the mass diffusivity by the symbol
D p, where the subscript A denotes the diffusing species A and B denotes the medium
through which it diffuses.

To illustrate the phenomenon of diffusion, let us consider a large reservoir containing
air plus a small amount of argon gas at atmospheric pressure. A capillary tube of length L,
is attached to the reservoir (Fig. 14.2). At the beginning of the experiment, the outer end of
the capillary is sealed so that the concentration of argon in the reservoir and along the length
of the capillary is uniform. However, at time ¢ = 0, the seal at the end of the capillary is
broken. Since the concentration of argon in the reservoir, c4 1, is larger than the natural
concentration of argon in the atmosphere around the reservoir, c4 g, argon molecules will
start moving through the capillary by diffusion.

_ Figure 142 shows that shortly after the capillary seal is broken, the concentration of
argon decreases asymptotically near the outer end of tube. With time, the argon concentration
closer to the reservoir is affected. Finally, after a period sufficiently long to reach steady state
conditions, a linear concentration profile is established along the length of the capillary. If
we now measure the rate at which argon molecules exit through the open end of the capillary,
we find that their rate of diffusion through the tube can be expressed as follows:

n4 _ number of gram moles of argon transferred

Tt time
A1 — CA2)
« Al

(14.1.1)

where c41 and c45 is the concentration of argon molecules at the two ends of the capillary,
in gram moles per unit volume; A, is the cross-sectional area of the capillary passage.

It is noted that in the above equation, and throughout the discussion of mass transfer,
we use the quantity of gram moles to represent the number of transferred molecules. It is of
course much easier to measure the weight or volume of a certain amount of material than
attempt to count molecules; the result is the same, since one gram mole of any chemical
species, i.e., its molecular weight expressed in grams, contains the same number of molecules
(Avogadro number, Table A2, Appendix A).

The proportionality constant in the above phenomenological relationship has been de-
fined as the mass diffusivity, or diffusion coefficient, of component A in component B.
By introducing this constant in (14.1.1), we can express the molar flux of argon, i.e., the
molar rate per unit cross-sectional area of the capillary, as follows:

_na _ (ca1 — ca2)
Na= A, = Dap _—-_Lc . (14.1.2)

where D p is the diffusion coefficient of species A (in this case, argon) in species B (in
this case, air); N, is the molar flux of diffusing species A (e.g., mol s™! cm™?).
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Since, at steady state, the concentration profile along the length of the capillary is
linear, every infinitesimal segment of the concentration gradient is represented by the same
relationship. Therefore, (14.1.2) can be expressed in differential form:

_ ch
Nay=-Dap ay (14.1.3)

where V4, denotes the molar flux diffusing in the y-direction (in this case, the direction of
the capillary). Equation (14.1.3) is cormmonly referred to as Fick’s first law of diffusion.
The minus sign in (14.1.3) expresses the fact that diffusion always occurs from a region of

. higher concentration to a lower one (y1 — y2 = —du).

In the above equation, the concentration of the diffusing species is expressed in molar
terms, i.e., g moles cm~2 (for short: mol cm~3) or kg moles m—? (for short: kmol m~32).
For example, we know from the ideal gas law that the volume of 1 kg mole (abbreviated
to 1 kmol) of any ideal gas at 1 atmosphere and 0°C (273 K) is 22.4 m®. Therefore, the
concentration of the gas under these conditions is 1/22.4 kmol m~3. The symbol ¢4 will
be used in this text to denote molar concentration.

In some problems, it is preferable to express concentration in mass terms, e.g., kg m—3
in the SI system. For example, the concentration of pure water at room temperature, i.e., its
density, is approximately 1000 kg m=2 (1 g cm™? in the metric system). The Greek letter
p,» which we have used throughout this text to denote density, will be used to denote mass
concentration, since the two terms are synonymous.

Let us now use (14.1.3) to derive the units of mass diffusivity, or diffusion coefficient.
First we note that the units of the mass dimension (M) in the molar flux N4 ., on the
left-hand side of (14.1.3), and in the concentration differential, on the right, must always
be the same; therefore, they cancel out and do not affect either the dimensions or the units
of the diffusion coefficient. By substituting the dimensions of mass flux (M t~! L=2)
and concentration gradient (M L~3 L™1) in (14.1.3), we conclude that the dimensions of
diffusivity are L? t~!. Therefore, its units are m? s~! in the SI system and cm? s~! in the
metric system.

In the above example, we considered diffusion only in the x-direction. In the general
case of three-dimensional diffusion, Fick’s first law of diffusion would be expressed as
follows for a binary system:

Oca d¢ca ac"‘) , (14.1.4)

Naz+Npgy+Ny.=—- (DABE +DAB§; + DABE-

and for a system of constant diffusivity in all three dimensions (isotropic diffusion), in vector
notation, '

Ny =—-DapVeca. (14.1.5)

14.2. ANALOGY OF DIFFUSION TO MOMENTUM AND HEAT TRANSFER

The reader will recall that in Chapters 3 and 11 we introduced the concepts of kinematic
viscosity, v, and thermal diffusivity, o, which have the same dimensions as the diffusion
coefficient, i.e., L2 t~!. We also showed that, for constant fluid properties, the following
analogy exists between the equations describing momentum and heat transfer:
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Newton’s law of viscosity:

Opuz
Ty,z = *v-—(g’: ); (3.1.4)
Fourier’s law of heat conduction:
pC,T .
@y = —a('oa—;')- (10.4.1)

We now note that there is a clear analogy between the above two relationships and
Fick’s first law for diffusion (see (14.1.4), diffusion in y-direction):

Nay=-Das %‘- (14.1.3)

It can be seen that all three equations express a proportionality between a flux (momen-
tum, heat, mass) and a gradient (velocity, temperature, concentration) which is the driving
force for transport of kinetic energy, or thermal energy, or matter. The proportionality
constant for momentum transfer is the momentum diffusivity, v; for heat conduction, the
thermal diffusivity, o; and for mass transfer the molecular diffusivity, D4p. The analogy

between the three laws was illustrated in Table 1.1 (Chapter 1).

14.3. CONCENTRATION OF MIXTURES AND SOLUTIONS

The molar concentration of a mixture or solution is equal to the sum of the molar concen-
trations of all species in the mixture:

c=cA+cB+cc+...=Zc,-. (14.3.1)

=1
The mass density, or simply density, of a mixture or solution is the sum of the mass
concentrations of all species in the mixture:

™

p=patpptpct...=y pi (14.3.2)

i=1

It is also useful to define the mole fraction of a species A in a mixture as follows:

X, = %" =4 (14.3.3)
PN
i=1
and therefore, .
Y Xi=1. _ (14.3.4)
=1

Finally, the mass fraction of species A is defined as

x,=fA_ P4 (14.3.5)
P E Pi

i=1
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and therefore,
Y Xi=1 (14.3.6)
i=1
The molar and mass fractions of species A are related as follows:

XaMy
Mn.ve ’

X, = (14.3.7)
where M4 and M,,. are the molecular weights of component A and of the solution or
mixture, respectively,

Fick’s law of diffusion (see (14.1.4)) is expressed as follows in terms of the molar
fraction of the component A diffusing in the y-direction: '

8X 4
Nay=—-Daspc By (14.3.8)
and in terms of the mass fractional concentration:
0x', -
Ny ,=—-Dagp —By—ﬁ, (14.3.9)

where Nj,.y is the mass flux of component A in the y-direction.

14.4. VALUES OF MASS DIFFUSIVITIES OF MATERIALS

Values of the molecular diffusivity vary widely from phase to phase and from material to
material. Table 14.1 [1,2] lists typical values of the diffusivities of gas, liquid and solid
systems. In general, the diffusivity of gases is four to five orders of magnitude larger than
for liquids and 8 to 30 orders of magnitude greater than that of solids.

Table 14.1 also shows that the variation in the coefficients of diffusion in different
molten metals is less than one order of magnitude. The diffusivity of alcohol in water has
been included in this tabulation for comparison with a low-temperature system of general
interest. )

It can also be seen that the measured diffusivities in slags are considerably lower than
in metallic melts, with the exception of Fe in high-iron slags of the type encountered in
non-ferrous smelting. Finally, diffusion coefficients in solids are usually less than 10~5 cm?
s~ and at room temperature can be as low as 10~ cm? 57! [1,2].

14.4.1. Factors Affecting the Diffusivity of Gases

At low to moderate pressures (< 10 atm), gas diffusivity is not affected by concentration.
On the basis of the kinetic theory of gases, the diffusivity of gases should be proportional
to the 1.5 power of the absolute temperature and inversely proportional to the pressure of
the system. However, experimental studies suggest that the temperature coefficient is closer
to 1.75. The best available correlation, based on nearly 340 experimental data on the gases
listed in Table 14.2 and 2 number of organic vapors, is by Fuller, Schettler and Giddings
[4](P is in atm):

Dap

0.00171™ 1 1 \M?
, (14.4.1)

= +
PV + v’ \Ma ~ Mp
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Table 14.1. Diffusivities of Some Gases, Liquids, and Solids

System Temperature, °C Dpp cm®s™
Gases: . _

H,0in N, 25 : 026
H,0in O, 450 1.3

CO, in O, 500 . 09
H,in O, _ , 25 07

H, in O, ' 500 : 42

H, in H,0 500 5.15

H, in H,O ' 900 14

Aqueous solutions:
NaCl in water 25 148 x 107

Ethyl alcohol in water 25 1.28 x 10°°
Sucrose in water 25 0.56 x 10°
Molten metals: _
Pb in lead melt 343 25x10°
Ag in silver melt 1060 3.22 x 107
Cu in Cu-S melt (19.8% S) 1160 7.49 x 107°
Cu in Cu-S melt (19.8% S) 1256 10.10 x 107°
Fe in Fe-S (33.5%5) 1152 522 x 10
Fe in 2.5% C iron 1400 9.0 x10°
C in 3.5% C iron 1550 . 6.0x 107
Molten salts:
Na in molten NaCl 906 14.2 x 10°®
Molten slags:
Cu in 39%Ca0, 21%Al,0;, 40% SiO, - 1400 0.067 x 10°°
Si in 40%Ca0, 20%Al,0;, 40% S5i0, 1430 0.01 x 10°°
O in 40%Ca0, 20%Al,0,, 40%5i0, ' 1430 04x10°
Fe in 43%Ca0, 22%AL,0;, 35% Si0, 1500 0.35 x 10°°
Fe in 61% FeQ, 39% SiO, 1275 9.6 x 107°
Solids: |
Al in copper : 20 1.3 x 107%°
Bi in lead ' 20 ' 1.1 x 107
Sn in iron 900 83 x 10
C in iron 800 2.7 x 1078

C in iron 1000 327 x107°
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Table 14.2. Diffusion Volumes of Simple Molecules of Gases [4]

Element or Diffusion Element or Diffusion
compound volume compound volume
H, 707 ' CO, 26.9
D, 6.70 : N,O 35.9
He 2.88 NH,4 14.9
N, 17.9 - {CCLLE) 1148
Ar 16.1 (SFg) 69.7
Co " 189 0, - 166

CO, 26.9 ' Air 20.1
CH, 24.4 Ne 5.59
H,O 127 Kr 228 .
Cl, 37.7 (Xe) 37.9
Br, 67.2 _ SO, . 41.1

Parentheses indicate that the correlation was based on only a few data.

Atomic and structural diffusion volume elements

C - - 165 Cl 19.5
H 198 _ S 17.0
O . 548 Aromatic or hetero-

(N) 5.69 cyclic rings —20.2

where the molecular diffusivity is expressed in cm® s~!, V4 and Vp are the diffusion
volumes of molecules A and B, and M4 and Mg are their respective molecular weights.

The diffusion volumes shown in Table 14.2 are derived semi-empirically to provide the

“best fit” of the available experimental data to (14.4.1). The diffusion volumes of organic
molecules can be calculated by adding the atomic and structural diffusion volume elements
shown at the bottom of Table 14.2; for example the diffusion volume of CHy is calculated
to be 24.4.

The diffusion volumes have the same units and are of the same order of magnitude

as the molar volumes of elements and compounds, i.e., the ratio Ma/pa, where pja is,

the density of substance A at its boiling point and atmospheric pressure. For example, the
diffusion volume of H; is 7.07 (Table 14.2) while its molar volume is calculated [S] to be
28.4; for heavier gases, the diffusion volumes and molecular volumes are very close (e.g.,
for SO3, 41.1 vs. 44.7). For metallic vapors, in the absence of information on their diffusion
volumes, it is recommended to use their molar volumes (Table 14.3) in (14.4.1).

L]
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Figure 14.3. Diffusivities of some binary gas mixtures [3].

The diffusivities of some binary gas mixtures commonly used in materials processing
are shown in Fig. 14.3 [3].

Example 14.4.1

An argon atmosphere is maintained over an iron melt at 1600°C. Calculate the diffusivity
of iron vapor in argon using the correlation of (14.4.1), the diffusion volume of argon (Table
14.2) and the molecular volume of iron (Mr./ pre, etc.) from Table 14.3.

Substituting numerical values in (14.4.1), we obtain

0.001 x 1873175 1 1\ 9 -1
Dre-tr = 75 711 L 16.175% (55.35 + 39.95) =559 em”s
o 0% {0

14.4.2. Factors Affecting the Diffusivity of Liquids

Figures 14.4 and 14.5 show that diffusion coefficients in liquids vary with concentration
and temperature. In most cases, the concentration dependence of diffusivity is nonlinear,
especially for non-ideal solutions such as the ethanol-water system and most slag and metal
systems. As in the case of viscosity, the dependence of liquid diffusivity to temperature is
expressed by means of an Arrhenius type of equation

D = Dge~Fa/RT, (14.4.2)

where Dy is the diffusivity at some reference temperature and E; the temperature coefficient,
or apparent activation energy for diffusivity. However, it is evident that diffusivity is
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Table 14.3. Molar Volumes of Metal Vapors

Element or Melting Boiling Molar volume

compound point (*C) point (°C) cm® mol?
Ag 960.8 1950 10.3
Al 660 2056 - - 10.0
Bi 271 1450 213
cd 321 767 13.0
Co 1493 2900 6.6
Cu 1083 2300 7.1
Fe 1535 3000 7.1
Hg -38.9 357 : 148
In 156.4 1450 15.7
X 63.7 ' 760 _ 455
Li 186 . 1336 13.1
Mg 651 1110 14.0
Na 979 880 23.7
Ni 1453 2900 6.6
Pb 3274 1620 183
Sb 630.5 1380 182
Sn 231.9 2260 20.6
Zn 4195 ' 907 92

proportional to the mobility of the liquid molecules while the inverse is true for viscosity;
this is accounted for by the minus sign in (14.4.2).

Typical values of E; for molten salts and liquid metal solutions range from 4-16 kcal
mol~? [3]. For slags, the fluidity of which increases rapidly with temperature, the apparent
activation energy has been found to range between 20 and 95 kecal mol ! [3].

As in the case of liquid viscosities and thermal conductivities, our present understanding
of diffusion in the liquid state is inadequate to allow the prediction of diffusion coefficients
on the basis of the molecular properties of the system. However, some models of the liquid
state have been proposed which relate the diffusivity to some other physical property of the
system [6,7]. '

14.4.3. Factors affecting the Diffusivity of Solids

Similarly to liquids, the molecular diffusivity in solids depends on the concentration of
the diffusing species and is also strongly temperature-dependent. Activation energies range
from 10 to 100 kcal per gram mole. Diffusion in some solids can be very nonisotropic. A
particular case of anisotropy is in grain boundary diffusion where diffusion proceeds much
faster at the interfaces between adjacent grains than through the grains. For example, Fig.
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Figure 14.5, Seli-diffusion coefficient of Fe in molten matte [15].

14.6 [3] shows that the diffusivity of interstitial carbon in iron at 1000-1200°C is in the
order of 1075 to 10~*; in contrast, Fig. 14.7 [3] shows that the diffusivity of Si and Al atoms
through iron, in the same temperature range, is much lower. In general, it is not possible
to specify a unique diffusion coefficient for a solid without also specifying the structure of
the material. = ' '

14.5, EFFECT OF NET DIFFUSION VELOCITY

Equation (14.1.4) expresses the mass flux of component A in a two-component (binary),
motionless system. However, since diffusion is the physical movement of a chemical species,
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Figure 14.6. Interdiffusion coefficients of interstitial elements through ferrous materials [3].

there may be a resulting bulk flow, unless each molecule diffusing away from a particular
location is replaced by molecules of the same volume diffusing towards that location.

To visualize the bulk flow due to diffusion, let us express the molar flux of the diffusing
component A, V4, in terms of a diffusion velocity, u% (dimensions L t~1) as follows:

N =cpuly. (14.5.1)

It can be seen that both the diffusion velocity and the molar flux have a direction. Thus,
if species A and B are diffusing toward opposite directions, one flux will be ‘positive and
the other negative. The net bulk flow of the mixture, due solely to diffusion, is obtained by
adding up the molar fluxes of the contained species:

ot = Niotal _Na+t NB.

2 - (14.5.2)

In the presence of such a net bulk flow due to diffusion, the molar flux of component
A, past a fixed point in space, will be equal to the molar flux due to diffusion, as expressed

by Fick’'s law of diffusion (see (14.1.3),) plus the amount of component A carried along in
the net bulk flow: '

ox ax
NA,%= _DABCB_; + Nioian X4 = —Dgpe ayA

+(Nas+Ng)Xa, (14.5.3)
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Figure 14.7. Interdiffusion coefficients in ferrous malerials [3].

and in vector notation:
INA = —cDapVXs+(Na +NB)XA.

Similarly, the mass flux is expressed as follows:.

80X,
a2 = ~Dapp 55 + (N + Np) Xy,

217

(14.5.4)

(14.5.5)

The above equations represent the general statement of Fick’s law of diffusion over the
whole concentration range in a binary system. In the case of very low concentrations of A,
the net bulk flow terms in (14.5.3}-(14.5.5) are negligible. The same is true in the case of

egquimolar counter-diffusion in a binary system, where

Ny =—Npg.

In order to distinguish between the molar flux due to diffusion (i.e., Fick's law, see
(14.1.3)) and that due to diffusion plus net bulk flow (i.e., see (14.5.3)), we will use the
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respective symbols N4 and N (some authors use J7 for the combined molar flux). There-
fore,

N3 =Na+(Na+Np)Xa=Ng+cuw X p (14.5.6)
where u* is defined by (14.5.2). )

14.6. DIFFUSION IN MULTICOMPONENT SYSTEMS

As noted above, the discussion in §14.5 referred to binary systems. Multicomponent dif-
fusion systems are more complex. For example, the diffusion coefficients in such systems’
may depend both on the nature of the diffusing species and on the fluxes of the other species
contained in the mixture. For gases, it is normally assumed that the diffusivity is indepen-
dent of composition. On the basis of this assumption, diffusion in a multicomponent gas
system of n components is described by the Stefan-Maxwell equation [8):

dX; <~ ac; (N; N; :
. dy _J_glcz_D (CJ' ) (14.6.1)

ij Ci

For the case of diffusion of component ¢, at low concentration and diffusing into a ho-
mogeneous mixture, the N; fluxes can be considered to be negligible and (14.6.1) reduces
to

. . . B . .
i _ N > E’- (14.6.2)

If we define the diffusivity of component < in the mixture m as

Ni fdx\7
D:m = __c_' (E) H (14‘6'3)

we obtain the following expression for D;,,:

-1
T X'
D.—m=( 3 B—’-) . (14.6.4)
j=ljgi Y

Diffusion in multicomponent liquids is even more complex and it is usvally necessary
to resort to experimental measurements of the diffusion coefficient for a particular system.

14,7, STEADY-STATE UNIDIRECTIONAL DIFFUSION

In this section we shall discuss the use of Fick's law for formulating and solving simple
diffusion problems. As in the case of momentum and heat transfer, we start by considering
an appropriate infinitesimal element in a material B through which are diffusing molecules
of the species A (Fig. 14.8). The mass balance for the diffusing species is stated as follows:

accumulation of A in element _
= rate of diffusion in — rate of diffusion out (14.7.1)
+ rate of generation of A in element.
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Figure 14.8. Diffusion in and out of an infinitesimal volume clement.

For generality, we have included in the above statement a term for the generation (or
consumption) of A within the element by chemical reaction. Problems of this nature are
encountered in some systems and will be discussed later.

Under steady-state conditions, which we shall consider in this section, the accumulation
(or depletion) term in the above mass balance is zero. Also, in the absence of a homogeneous
chemical reaction, (14.7.1) can be expressed mathematically as follows, for unidirectional
diffusion of A in the y-direction: _

_ dN4 _
dy

If the net bulk flow due to diffusion through the element is negligible, we can substitute

for N4 in the above equation from Fick’s law (see (14.1.3)) to obtain the following second-
order differential equation:

0. (14.7.2)

=0. (14.7.3)

The boundary conditions required for the solution of such an equation depend on the
physical and chemical characteristics of the system and may take the following forms:
a. The concentration is specified at the boundary surfaces.
b. The mass flux, i.e., some function of the concentration gradient, is specified
at the boundary surfaces.
c. In the case of composite media, the relationships between the mass fluxes
and the concentrations are specified at the interfaces between two adjacent
media. )

The above formulation allows us to incorporate the effect of any chemical reactions in
the mathematical statement of the problem. For example, a homogeneous reaction, i.e., one
that takes place throughout the volume of the control element (Chapter 18), would appear
as an additional term in (14.7.3); while a heterogeneous reaction, occurring at a boundary
surface, would appear as a boundary condition.

The reader will note the similarity between the above procedure and that used earlier
for the solution of heat conduction problems. However, the formulation and solution of
diffusion problems can be more complex because of the following important differences
from heat conduction: o _

a. If the diffusing species is present in large concentrations, the diffusion pro-
cess may result in bulk motion within a fluid system, as discussed earlier.
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Figure 14.9. Diffusion of a vapor through 2 stagnant gas in a tube.

b. In the case of diffusion in mixtures of species, it may be necessary to set up
several equations, one for each diffusing species.
c. In non-ideal diffusion systems, the concentration may affect molecular dif-
fusivity more strongly than temperature affects thermal diffusivity.
Despite these important differences, the techniques developed for the solution of heat

conduction problems can frequently be applied to diffusion by making certain simplifying
assumptions.

14.7.1. Diffusion Through a Stagnant Fluid

Let us consider the vaporization of a liquid metal A contained in the bottom of a narrow
tube and the entrainment of the vapor in a gas stream B flowing over the top of the tube
(Fig. 14.9). The whole system is isothermal and convection through the length of the tube
may be considered to be negligible. The vapor pressure at the surface of the liquid metal
is much lower than the system pressure and all mass transport to the gas stream occurs by
diffusion. ' _

Following the procedure described above, we can formulate this problem by selecting
the control volume to be a cylindrical section of height dy (Fig. 14.9). The material balance
for this volume element yields

dN4 -
& - 0. (14.7.4)
Also, from the general (14.5.1), the molar flux in this case is expressed as follows:
dX ' -
Nag=-cDap —@‘1 + Xa(Na + Np). (14.7.5)

At steady state, molecules of A move away from the evaporating surface while species
B rcmaiqs stationary, Therefore, Ng = 0 and (14.7.5) can be rearranged to yield

cDAE -d.XA

A=_1—XA dy

(14.7.6)
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Figure 14.10. Steady-state concentration profile of species A diffusing in “stagnant” species
B.

By combining (14.7.4) and (14.7.6), we obtain

d CDAB dXA _
% ( =X, & ) = 0. (14.7.7)

and for constant molar density, ¢, and diffusivity, D4p,

d 1 dXa\ _
i ( = ) =0. (14.7.8)

The above equation can be integrated for the following boundary conditions:
XA=XA10 aty =0 and XA=XA'L aty =1L,

to yield the following solution:

_ _ v/L
1~ X4 —(1 X“""") : (14.7.9)

l—XA,g - 1—XA,0

The concentration profile of species B can also be determined from this equation since for
a binary system _
Xp=1—-X,. (14.7.10)

Figure 14.10 shows a typical plot of X4 and X g against the dimensionless distance
from the surface of the liquid metal, /L. The reader may question the fact that, earlier,
we specified that the net flux of B is zero while we now show that a concentration gradient
exists in the species B; the answer is that due to the diffusion of A, there is a net upward
flow which would result in convective transfer of the species B. In other words, the diffusion
of B downwards, due to the concentration gradient shown in Figure 14.10, is in balance
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with the convective transfer of B caused by the upward diffusion of species A; as a result,
the net molar flux of B is zero.

In many diffusion problems, it is required to determine the net flux of the diffusing
species, rather than its concentration profile. For steady state conditions and in the absence
of chemical reaction, N4 is independent of y; therefore,

Na=Nap=DNa,r-

From the above equation and (14.7.6), we obtain

Nago ,  dXa
Dan dy = X, (14.7.11)
which can be integrated for the boundary conditions of this problem to yield
cDap 1—Xar
Nap= : .
A0 T In (1 “Xao)’ (14.7.12)
which may also be expressed as
cD X
Npp= —AE8 |, Z5.L (14.7.13)

! L XBo

14.7.2. Diffusion Through Porous Media

In the processing of materials, there are situations where one is interested in the diffusion
of a fluid through porous solids. Examples are the reduction of oxides or the oxidation
of sulfides, gas phase alloying, drying and so forth. The porosity of a solid body can be
estimated from its bulk density, i.e., massfouter volume, as follows:

bulk density
density of element or compound’

porosity: e =1 — (14.7.14)

It is generally considered that diffusion of gases in a porous material occurs either by
ordinary gas diffusion through the pores of the medium or by Knudsen diffusion. Ordinary
diffusion occurs when the pores are much larger than the mean free path of the gas molecules,
i.e., the distance that a molecule travels between collisions with other molecules.

 Ordinary diffusion through a porous medium is treated in the same way as molecular
diffusion in “the open” with the exception that the cross-sectional area available for diffusion
is decreased, because of the presence of the solid interstices between pores; also, the length
of the path is increased because of the tortuous path that must be followed by the gas
molecules through the interconnected pores. Therefore, the same equations can be used as
for diffusion in the open but the molecular diffusivity is replaced by the effective diffusivity
which accounts for the above geometric effects and is defined as follows:

Effective diffusivity of A in B = Deg = 2 ’:B : (14.7.15)
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Figure 14.11. Effeclive diffusivity of hydrogen in air in various non-consolidated porous

media [8].

where the porosity, €, accounts for the decreased area available for diffusion and the tortu-
osity, 7, accounts for the longer path to be followed by the diffusing molecules.

In practice, the porosity of a material may range from 0.2 to 1 and the tortuosity from 1
to 10. Figure 14.11 [8] shows how the ratio D.g/D 45 varies with porosity for the diffusion
of hydrogen in air, through a number of loose (non-consolidated) materials.

At very low gas pressures, or when the pore size is very small, there is a higher
probability that the gas molecules will collide with the walls of the pore than with each
other and the mass flux of molecules through the pore is expressed as follows:

_ZugTe dX 4

(14.7.16)

where 7 is the pore radius and %, is the average velocity of the gas molecules expressed by

_ {8RT 1/2 .
ug_(ﬂMg) , (14.7.17)

where M, is the molecular weight of the gas, and R is the universal gas constant, as defined
in Table A2 {Appendix).

By combining (14.7.16) and (14.7.17), we obtain the definition of the Knudsen diffu-
sion coefficient:

7 \1/2 )
Dy = 9700r (E) . (14.7.18)

g
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As in the case of ordinary diffusion, Knudsen diffusion is also affected by the porosity
of the material and the tortuosity of the pores; therefore, the gffective Knudsen diffusion
coefficient is expressed as follows:

Dge

Effective Knudsen diffusivity = Dg,. = (14.7.19)

In practice, the micropore radius has been found to range from 16 to 200 angstroms and the
tortuosity factor in micropore media from 1 to 10 [8].

14.7.3. Logarithmic Mean Concentration

In mass transfer, in analogy to the heat convection problems discussed in Chapter 12, it is
frequently convenient to use the logarithmic mean “driving force.” The logarithmic mean
of the two concentrations Xp 1 and Xpg 3 is defined similarly to (12.8.10) as

Xp2—XB,a

XB,LM = %5 (14.7.20)
Xen
By introducing the definition of X rar in (14.7.13) (§14.7.1), we obtain
¢Da_p (Xp2—XB,1)
Nyo= ! —, 14.7.21
0 XM L ( )
which may also be written as
Nap = Da-e Xan — Xaa) (14.7.22)

XB,LM L

In very dilute binary systems where X A,i and X 4 2 are very low,
XB,2 =2 XB,I =1,

and therefore
Xpim =1

Under these conditions, (14.7.22) shows that the molar flux N, o will be proportional
to (Xa,1 — Xa,2)/L, which may be called the driving force for diffusion. On the other
hand, for increasing values of X 4 1, the term X p r s will become progressively lower than
unity; thus any increase in X4, will result in a larger than linear increase of N 4. The
presence of the logarithmic mean term in (14.7.22) provides for the “net bulk flow” effect
of diffusion, which was described earlier.

Expressions similar to (14.7.22) are frequently used in the so-called film theories of
mass transfer, where it is assumed that the resistance to the diffusion process can be attributed
to a thin stagnant film of a certain thickness. In earlier diffusion studies, the effect of X 1 s
on the mass flux was neglected. The following example shows that such an omission may
not be justifiable under certain conditions.
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Example 14.7.1

The rate of decomposition of a layer of calcium carbonate placed in an oven tray is controlled
by the mass transfer of carbon dioxide between the surface of the layer and the atmospheric
air above it. As a very rough approximation, this process may be represented by the diffusion
of CO, through a 0.1-cm-thick stagnant film gas. It may be assumed that the molar density .
of the gas film is constant at 1.4 x 10~5 mol cm™3, the diffusivity of CO;3 in air is 2.0 cm?
s~!, and there is no accumulation of CO; in the oven atmosphere above the stagnant film
(i.e., Xa,2=0,0r Xg3 = 1). We need to calculate the variation in the molar flux of CQO,
with concentration of CO; at the solid/gas interface. By substituting the given numerical
values in (14.7.20) and (14.7.22) we obtain

Concentration of Logarithmic mean
CO; at solid/gas : of air concenfration Neo,
interface, X, 4 across film, Xp mol s em™

0.01 0.995 28x10°
0.10 0.949 295 x 10°%
0.50 0.721 194 x 10°°
0.90 0.391 645 x 10
0.99 0.215 1289 x 107

This tabulation shows that the “net bulk flow” effect, represented by the logarithmic
mean Xp 1, increases rapidly as the mole fraction of the diffusing species approaches
unity. This theoretical prediction is supported by practical experience. For instance, in the
use of the oxygen-acetylene torch for cutting metals, the use of high-purity oxygen has been
found to increase the efficiency of the cutting torch.

14.7.4. Diffusion and Chemical Reaction in a Stagnant Film

As an example of simultaneous diffusion and homogeneous chemical reaction, let us consider
a case where molten metal contained in the bottom of a narrow tube is volatilized and the
vapor reacts with a component of the gas phase over the liquid surface (Fig. 14.12). For
example, this situation occurs in the industrial practice of purifying selenium by boiling the
impure liquid in a retort and oxidizing the vapor with air to SeO,.

If we assume that reaction occurs only in the gas phase above the liquid, the problem
may be formulated by considering that diffusion and chemical reaction take place in a
stagnant film of thickness §. Under steady state conditions, the mathematical statement of
the material balance equation {see (14.7.1)) for species A is

E‘E(NA_,,) +7a=0, (14.7.23)
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Figure 14.12. Diffusion and homogeneous reaction of selenium vapor and oxygen in a nitrogen
atmosphere. .

and for species B:
d R
d_y(NB'y) + 1.‘3 = 0, (14724)

where 4 and 7p represent the rates of reaction of species 4 and B and have the units of
moles/time/unit volume.

Before we proceed further, it is necessary to express 74 and 7p in terms of the con-
centration of A and B. Let us assume that in this case, the reaction between A and B is a
second-order irreversible reaction (Chapter 18) of the form

A+ B — AB.

Therefore,
f‘A—'f‘B—er XaXg, (14.7.25)

where X4 and X p are the mole fractions of species A and B and k is the reaction rate
constant for the second-order reaction (Chapter 18).

To simplify the problcm further, we shall assume that the system is isothermal and
that the diffusing species A and B are at a low enough concentration so that the effect of -
net bulk flow is negligible (i.e., N} = N;). By substituting for 74, #5 from (14.7.25) into
(14.7.23) and (14.7.24) and expressing N , and Np , by the concentration gradients of A
and B, we obtain

X
‘CDA—Q% +k.*XaXp =0, (14.7.26)
and
&Xp
~eDp-g=g 5 +kne *X4Xp =0, (14.7.27)

where D4_g and Dpg. , are the diffusivities of species A and B in the gas phase over the
liquid.

Equations (14.7.26) and (14.7.27) are a system of coupled nonlinear differential equa-
tions, the solution of which would require a numerical method of solution. However, an
analytical solution can be obtained for the case where the rate of the chemical reaction
between A and B is much higher than the respective rates of diffusion of A and B to the
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‘reaction zone; i.e., when the A molecules react with B as soon as they are transported by

diffusion to the reaction zone, where their concentration becomes zero (plane Y, Fig. 14.12).
Under these conditions, there is no chemical reaction at any other location than y = Y
and (14.7.26)-(14.7.27) simplify to

d2X 4 '
-d_yz_ =0 for 0 <y < Y, (14.7.28)
X8 o for Y <y<I (14.7.29)
| Frale or Y <y< L. 7.
The boundary conditions are:
Xa=Xap3 at y=0, (14.7.30)
Xp=Xpgy aty=1L, (14.7.31)
Xa=Xg=0aty=Y. ' (14.7.32)

Finally, the location of ¥ is specified by the fact that at that plane the molar fluxes of A

‘and B must be at the required stoichiometric ratio for the reaction; in the present case of

equimolar reaction of A and B, at steady conditions we have at y =Y, N4 = Np, ie., ~

Xa1—X Xg1—X :
.DA—g ( A'l_"'_"‘Y A'Y) = DB—g ( Bi — YB‘Y) ) (14.7.33)

where, from (14.7.32), X4,y = Xp,y = 0. Solving (14.7.33) for Y, we obtain

y = L

= ( oo xm). (14.7.34)

Da_gXan

Differential equations (14.7.28)14.7.29) and boundary conditions (14.7.30)—(14.7.32)
(with Y as defined by {14.7.34)) represent the complete statement of the problem. Equations
(14.7.28)(14.7.29) can be integrated to yield

X4=Xa1 (Y; y) , ' (14.7.35)
and v
— ¥y—
Xp=Xp, ( I Y) \ (14.7.36)

where Y is expressed by (14.7.34). The net molar flux of A from the liquid surface (i.e., at
y = 0) is expressed by

Nap=cDa_, (M) . (14.7.37)

Substituting for ¥ from (14.7.34) and considering that X4 y = 0 at y =Y (see (14.7.32)),
we obtain : Da X Do x .

N —_ clA-g AL (]_ + M) \ 14.7.38

A0 L Da-gXan ( )
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Figure 14.13. Iron vapor and oxygen concentration profiles in the formation of iron oxide.

It is interesting to note that (14.7.22), which was derived in §14.7.3 for a nonreacting
system and [ow concentrations of A (ie., Xp rp = 1), yields the following expression
which is equivalent to (14.7.38):

NA,O = (14.7.39)

Comparison of (14.7.38) and (14.7.39) shows that the effect of a homogeneous chemical
reaction which consumes the species A is to increase its rate of mass transfer from the
liquid surface. This line of reasoning was followed by Turkdogan, Grieveson, and Darken
[9] to explain their experimental finding that the rate of vaporization of a number of metals
increased greatly with oxygen concentration in the atmosphere above the liquid surface.
Figure 14.13 is a schematic diagram of the countercurrent molar flux of iron vapor and
oxygen towards the reaction plane, ¥ = Y, where they react to form a.“fog” of iron oxide
particles [10]. _

Figure 14.14 [9] compares the observed rate of vaporization of a number of metals with
the theoretical prediction by Turkdogan et al., as a function of the oxygen partial pressure.
It can be seen that over a certain range of oxygen concentration, the rate of vaporization
of iron is proportional to the mole fraction of oxygen in the gas phase, as predicted by
(14.7.38). The abrupt decrease in the vaporization rate shown by the vertical dotted lines
in Fig. 14.14 was most likely due to the formation of an iron oxide layer on the surface of
the melt. '

Example 14.7.2

At 1600°C, the vapor pressure of iron is 0.057 mm Hg [11] and the diffusivity of iron
vapor in an argon atmosphere is estimated at 5.6 cm? s~!. Use the Langmuir equation
(see (14.7.40)) to calculate the maximum possible rate of vaporization of iron vapor from
the surface of an iron melt. Compare this value with the maximum vaporization rate of
0.88 x 10™% kmol s~ m~2 determined experimentally by Turkdogan et al. [10]. Calculate
the molar fraction of iron vapor and its concentration, cp., next to the surface of the melt and
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Figure 14.14, Calculated and experimental rates of vaporization of metals as a function of the
partial pressure of oxygen in the atmosphere [9].

the thickness of the iron vaporization zone, Y (Fig. 14. 13), if an argon-oxygen atmosphere
is maintained over the melt (P = 1 atm).

The Langmuir equation predicts the maximum rate of vaporization under vacuum:

Pi
N; = —— 14.7.4
FRex 27 RTM; (14.7.40)

where p; is the vapor pressure of material i at absolute temperature T, M; is the molecular
weight of material i; R is the universal gas constant (= 8.314 x 10® J kmol~! K=, Table
A2).

In order to use the Langmuir equation, we express the vapor pressure of iron, pg, in
SI units as 0.057

760
and substituting numerical values in (14.7.40), we calculate (Mg, = 55.85 g mol~1):

PFe = x 1.013 x 10° = 7.6 Newtonsm™2,

7.6

=1.03 % 10~* kmols~'m™2.
/27 % 8.314 x 103 x 1873 x 55.85

NFe,mnx =

It can be seen that the theoretically predicted value of the molar flux of iron is in fairly
good agreement with the experimental value of Npe max = 0.88 x 10~% kmol s~! m~2. We
now introduce the experimental value of N, in the following form of (14.7.37):

eDpe—4 (XFe s — Xre Y)

Y =
NFe max

(14.7.41)
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Figure 14.15. Schematic diagram of apparatus used for reaction between a CO/CO; gas jet
and a Fe-C melt.

where Xpe , is the fractional concentration of iron vapor at the melt surface (= 0.057 mm
Hg/760 mm Hg = 7.5 x 107°), X,y = 0 and ¢, the molar density of the atmosphere above
the melt, is calculated from the ideal gas law:

_ P 1013x10°
T RT  8.314 x 103 x 1873

c = 6.5 x 1073 kmolm™3. (14.7.42)

By substituting numerical values in (14.7.41), we calculate the thickness of the vaporization -
layer between the melt surface and the reaction “interface” Y to be

_ 65x1073 x 5.6 x107% x 7.5 x 107°

Y 0.88 x 104

= 3.1 x 10~% m = 3.1 microns.

Example 14.7.3

In a study of the decarburization of iron-carhbon melts [12], an 80-g melt, maintained at
1580°C in a 3.18-cm-diameter crucible, was decarburized by directing a stream of CO-CO;
gas against the surface of the melt, at an estimated velocity of about 200 cm s~ (Fig. 14.15).
The observed initial rates of decarburization are shown in Fig. 14.16 as a function of the
concentration of COs in the impinging jet. Determine whether the reaction is controlled by
diffusion through a gas film over the melt surface (Dgo,—co at 1580°C = 3.47 cm? s71). .

In this case, the diffusing species is COg, which reacts at the surface of the melt with
carbon in the metal to produce CO:

(14.7.43)



MASS DIFFUSIVITY: STEADY STATE DIFFUSION 231

8 T ]

Yo% 1072

min
'S
|
]

_HE0) 5C
di

I 1
00 0.2 04 0.6

1!1. (1 + XCO:)

Figure 14.16. Initial rate of decarburization as a function of COo concentration [12).

Therefore, . :
Nco = —2N¢o,- (14.7.44)

It can be seen that in this case, diffusion is not equimolar and there is a net bulk flow due
to diffusion. The comresponding form of (14.7.5) is

dX.
Ngo, = —cDco,-co dzo’ + Xco, (Nco, + Nco)- (14.7.45)

By. substituting for CO from (14.7.44), collecting the Ngp, terms on one side of
(14.7.45)and integrating d X co, for boundary conditions

Xco, = Xco,,e
(equilibrium concentration for reaction (14.7.43) at melt surface, Chapter 18) at ¥ = 0, and
Xco, = X0,

(bulk concentration of CO; in impinging gas jet), we obtain the following expression for
the decarburization rate:

Neo, = _tDco,-co ;. (1+X003.b) -

.7.46
Y 1+XCO:|,¢ : (14 7 _ )
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From thermodynamic data (Chapter 18), we find that Xco, ., the equilibrium mole
fraction of CO; at reaction surface, may be assumed to be near zero at concentrations in
the melt above 0.5% C. The molar density of the gas is calculated from the ideal gas law:

p P 1 attm
M RT 82.05%“’;]@9!’—1x18531{

=6.58 x 10~° molgm--".

Also the ratio Nco, /In(1 + Xco, )} can be estimated by converting the slope of the linear
plot of Fig. 14.16 (0.122 x 10~2 min~?) to moles of C (= moles of CO3) reacted per second
and dividing by the surface area of the melt (7.92 cm?):

Neco,  0122x10"% 80 1

= B = =1.71 x 10~ mc )
1n(1+X003) 60 x 12 X 7.92 ¥ 107° molCO2 5™ ¢cm

By substituting these numerical values in (14.7.46), we compute the thickness of the
hypothetical stagnant film:

6.57 x 107 x 3.47
Y= 171 x 105 = 1.33 cm.

Therefore, for the reaction to be controlled by gaseous diffusion, the thickness of the
“stagnant” film should be about 1.33 cm. This value is highly unlikely for the present exper-
imental system where a 200 cm s~! gas jet is directed against the surface. It must therefore
be concluded that the rate of decarburization is controlled by some other phenomenon, such
as the chemical reaction rate at the surface of the melt, or the transport of carbon atoms
from the bulk of the Fe—C melt to the reaction surface.
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FIFTEEN

Unsteady State Diffusion

In Chapter 14, we discussed the concept of mass diffusivity and used Fick’s first law of
diffusion to solve problems of unidirectional steady-state diffusion. In this chapter, a simitar
approach will be-used to develop the differential equations for the general case of three-
dimensional, unsteady-state diffusion.

15.1. THE DIFFERENTIAL EQUATIONS OF DIFFUSION

As we did earlier in developing the equations of motion (Chapter 5) and the differential ther-
mal energy balance (Chapter 11), let us consider an infinitesimal cubical element of volume
dx - dy - dz in a material B of overall concentration, or density, ¢ (Fig. 15.1). Molecules of
a species A are being transferred through this volume element either by diffusion or, in the
case of fluids, by net bulk flow. Also, in the genera! case, some molecules of A are either
consumed or generated within the differential element by means of chemical reaction. The
material energy balance for molecules A within this element is stated as follows:

rate of accumulation of A in element
= rate of net transfer by diffusion
+ rate of net transfer by convection
+ rate of generation of A in element.

The net transfer rate signifies the difference between input and output molar flux of A,
by diffusion and by bulk flow, with reference to a fixed coordinate system. Mathematically, -
the above statement is expressed as follows:

ea dzdydz =(Naz — Nazidz)dydz + (Nay — Naysay)dedz

bt , (15.1.1)
-+ (NA,z - NA,z+dz) dx dy + f'A dzdy dz:

where 74 is the rate of chemical reaction per unit volume of the material and the second
subscript of V4 signifies location. As demonstrated in Chapter 5 for the continuity equation
which is of similar form, this equation can be rearranged as follows:

8c,  [ONs O8Ny ON4
[ax t oy T oz

e

] 4, (15.1.2)

or in vector notation:
dca

—6t— = —VNA +ra. (1513)

233
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Figure 15.1. Material balance in a cubical element.

For diffusion of A through component B, we can substitute for N 4 in the above equation
from (14.5.4) (Chapter 14)

Na=—cDapVXa+XaNa+Np). (15.1.4)
to obtain: dc, .
Bt -—-_V[cDABVXA]-—V[XA(NA +Ng)] +7a. (15.1.5)
Also, by definition (Chapter 14),
' ca = cXa, (15.1.6)
where c is the molar concentration of the mixture (see (14.3.3)), and
I-Y-A-zﬁ =u*, (15.1.7)

where u* is the net diffusion velocity of the mixture as defined in Chapter 14 (see (14.5.2)).
By introducing these definitions in (I15.1.5), we obtain

8cXa

ot .

The velocity term u* in (15.1.8) represents the net bulk flow due to diffusion as dis-

cussed in Chapter 14. The analytical solution of the generat (15.1.8) is very difficult. How-

ever, certain simplifying assumptions can be made to allow for such a solution in special
cases. Thus, for a material of constant density, (15.1.8) is expressed as follows:

0Xa _ i X4 14} 3Xa 7] 8X 4
ot [8&: (DAB Oz ) * 5y Oy (DAB dy ) t 5 0z (DAB 0z )]

_ [u‘ 3XA . BXA BXA] TA

=V [CDABVXA] ~_V [C.XAH'] +74. - (15.1.8)

(15.1.9)

z Bz +u, By + u; 5 +—
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where uz, u,, and u; represent the components of the molar average velocity in the z-, y-,
and z-directions. By moving the negative term of (15.1.9) to the left side, we can use the
definition of the substantial time derivative of X 4, i.e.,

0Xa _ . 0Xa , ,0Xa .0Xa _DXa
8t +.= 5z T oy T T D

and express (15.1.9) as

DXa _ 6 8X4\ , @ 8X4\ , 8 8X4\" 4
Dt 6z (D*“E 9z ) 3y (DAB oy )T \Pae + (15.1.10)

At negligible net bulk flow due to diffusion, that is at low concentration of the diffusing
species or equimolar diffusion, the velocity components in the above equation are zero.
" Also, if the diffusivity does not change appreciably with concentration, (15.1.9) yields:

0.4 : %X .4 82X
X 4 ( A 4L A)

at 8z | oy2 | 077

+ %“‘ (15.1.11)

In the absence of chemical reaction, (15.1.11) simplifies further to what is called Fick’s
second law of diffusion:

0X4 (32XA 82X a + azxA)

50 " ap e (15.112)

- In cylindrical coordinates, the equivalent form of (15.1.9), for constant diffusivity is

0Xa . 0X4  up 6Xa «0Xa

2T T e e,
Dy (BXa 10Xs  18Xs XA\ fa (15.1.18)
TUABNTeT 7 Tar TR g2 922 c'

where the coordinates 7, 8, and-z are as defined in Chapter 11 (Fig. 11.2). For cylindrical
symmetry and negligible bulk flow, the above equation reduces to '

X4 02Xa , 18Xs | X4\ | 74
ot D“‘B( a2 Tt or | 82 )+?

(15.1.14)

The equivalent form of (15.1.9) and (15.1.13) in spherical coordinates is as follows:

86X 4 ,6‘X @8}{,; ‘U.; 86X 4
8t T 5 T r 80 ' rsnfd 04

1 8 g 0X4 1 a . 0Xa 1 32XA Ta
=Dar |35 (” or ) t 7m0 50 (Smg 58 ) T e og i ry
- (15.1.15)
where the coordinates r, #, and ¢ are as defined in Chapter 11 (Fig: 11.3). For spherical
symmetry and negligible bulk flow, (15.1.15) reduces to

Rl el Rt (15.1.16)

82X 20X, T
_=DAB( A 'A) :
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Figure 152. Removal of hydrogen from a steel plate under vacuum.

The reader may note that the equations for mass transfer in the absence of net bulk
flow effects (i.e., when u* = 0) are similar to the equations for unsteady state conduction
presented in Chapter 11. Therefore, some of the techniques presented for the solution of
heat conduction problems can also be applied to mass transfer. However, when bulk flow
effects are involved, the mass transfer equations are not fully analogous to those presented
for combined heat conduction and heat convection in Chapter 12. The difference is that in
heat transfer the velocities are.due to external forces or to buoyancy phenomena; while in
the case of mass transfer, bulk flow may also be caused by the diffusion process.

In the following sections of this chapter, we shall examine the application of the above
equations in solving engineering problems, under conditions where mass transfer by diffusion
is predominant; i.e., when the diffusing species is at a low concentration and the net bulk
flow is negligible. The reverse situation will be discussed in Chapter 16 on mass transfer
by convection.

15.2. DIFFUSION IN A PLATE OF FINITE THICKNESS

Let us consider a steel plate of thickness L (Fig. 15.2) which contains hydrogen at an initial
concentration, Xy ;. It is required to decrease the average hydrogen content of the metal
by heating the plate at 650°C under vacuum. We shall assume that the plate is preheated
uniformly to this temperature and that at Gme £ = 0, it is subjected to vacuum. Under
vacuum, the concentration of hydrogen at the upper and lower surfaces of the plate becomes
Xrs = 0. We need to develop a relationship between the time of vacuum treatment and
the change in the average concentration of hydrogen throughout the plate.

In the absence of bulk flow effects and chemical reaction and assuming unidirectional
diffusion of hydrogen from the bulk of the plate to its upper and lower surfaces, we obtain
from (15.1.12)

0Xgy . 92Xy
R Dy_Fe 2 . (15.2.1)

The boundary conditions in this case are:

Ag=Xyg; att=0, (15.2.2)

Xg=0aty=0and y=L. (15.2.3)
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Equation (15.2.1} is of the same form as (11.2.1) for unsteady state conduction (Chapter
11). Carslaw and Jaeger [1] derived an analytical solution of (11.2.1) in the form of the
product.of a trigonometric and an exponential series; in terms of the differential (15.2.1)
and its boundary conditions, this solution is expressed as follows:

XH _ 4 — 1 . (2n+1)1ry —Dy_ra(2n+1)3x71/ L2
XH';—?TZOZR-I-ISJD L ¢ '

(15.2.4)
Since the ﬁverage concentration of hydrogen in the plate, at any time, is expressed by

L

1

XHave = I f Xy dy, (15.2.5)
0

(15.2.4) and (15.2.5) can be combined and integrated to yield

XH,n.ve _ 8

— L —Du_r(2nt+1)x*tfL?
Xpi ; (2n + 1)28 " B (15.2.6)

Example 15.2.1

Calculate the time required to-decrease the hydrogen content of a 1.22-cm thick steel plate
from 0.5 ppm (parts per million) to an average of 0.25 ppm by heating it under vacuum at
400°C. The diffusivity of hydrogeg in iron has been reported to be 1.66 x 10~° at 10°C,
11.4x 1072 at 50°C, and 124 x 10-"9 cm?s~! at 100°C. Extrapolate these data on the basis
of an Arrhenius-type of relationship of diffusivity to temperature (see (14.4.2)) to estimate
the diffusivity of hydrogen atoms in steel at 400°C.
: From a linear regression analysis of the given diffusivity data for hydrogen in iron,
using the Lotus 1-2-3 Data Regression facdlty we establish the following equation for

Dy_re:

1 D = 246 - S22

From this equation, the value of Dg—. at 673 K is estimated at 4.7 x 10~° ¢cm? s~1. By
using (15.2.6) for the given ratio of

XHave _ 0.25
Xui ~ 0.50

= 0.5,

and introducing numerical values for the first five terms (n = 0...4) of (15.2.6) in a
spreadsheet program such as Lotus 1-2-3, we calculate the required time, £, to be 1557
seconds.

In the above example, we can also obtain an approximate solution by using graphi-
cal solutions which have been developed from the differential equations for unsteady-state
conduction (Chapter 11) but apply equally well for unsteady-state diffusion. In these plots
(Fig. 15.3), the dimensionless temperature on the y-axis is replaced by the dimensionless
concentration ratio (Xave — Xe)/(Xi — X.), where X, represents the “equilibrium” or final
attainable concentration of the component A in the material after infinite time of diffusion.
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Figure 15.3. Dimensionless average concentration vs. time for slabs of thickness 2L and
spheres and cylinders of radius R (3].

As in the case of thermal diffusion (Chapter 11), the z-axis represents the dimensionless
time of diffusion of component A, expressed by the group D 4pt/L2.

Figure 15.3 [3] shows three such plots of the fractional change in the dlmensmnless
concentration vs. dimensionless time for slabs of thickness 2L and spheres and cylinders
of radius R [4]. Another form of graphical representation of such data is in the form
of the fractional degree of diffusion of species A out of medium B as a function of the
dimensionless time elapsed since time ¢t = 0. For example, Fig. 15.4 is such a plot of the
diffusion of a species A out of a spherical particle [2]; m; is the amount of A diffused out
of a sphere over a time period ¢ and m; is the initial amount of A in the sphere at time 0.

15.3. DIFFUSION IN A SEMI-INFINITE MEDIUM

As in the case of heat conduction problems (Chapter 11), the unsteady state diffusion equa-
tions for semi-infinite media can be applied to systems of finite dimensions, provided that
the diffusion times are relatively short. Also, since the solutions of the diffusion equation
for infinite or semi-infinite media are relatively simple, they can be used as convenient
asymptotes for checking out part of the numerical solutions of more complex mathematical
models. '
In this section we shall examine the following cases of diffusion in semi-infinite media:
a. Unsteady state diffusion at low concentration of the diffusing species and at
constant diffusivity.
b. As in item a, but with variable diffusivity.
¢. Unsteady state diffusion in a two-phase system.
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Figure 15.4. Fractional degree of diffusion of species A as a function of dimensionless time
for a sphere of radius R. :

15.3.1. Unsteady State Diffusion at Constant Diffusivity

Let us consider a semi-infinite medium extending from y = 0 to ¥ = oo. Initially, the mole
fraction of the diffusing species A in the medium is X;; at time £ > 0, the mole fraction at
the surface plane ¥ = 0 is maintained at X ,. For unidirectional mass transfer, the diffusion
{15.1.12) simplifies to . ,

%—‘:E =DAB%;2£ for 0 <y < o0, (15.3.1)
where D 4p is the diffusion coefficient of A in B and X 4 is the mole fraction of A. The
boundary conditions are (see (11.2.15)):

X=2X;att=0, (15.3.2)
X=X at y— o0, (15.3.3)
X=X,aty=0andt>0. (15.3.4)

The solution of this system of equations is analogous to the equivalent heat conduction
problem discussed in §11.2.1: ' '

¥
X -X; = (X, - X;)erfc ———. 15.3.5
e = et st (15:35)

The molar flux of diffusing species A is therefore expressed as

_ X\ Dap\'/?
NA = —CDAB (a—y) 4= — C(X, X,) ( o ) . (1536)
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The mean value of the flux over a certain time interval t. is given by

1 f : Dap\ /2
Npave = T f Nadt = 2¢(X, — X;) ( ﬂ:ﬁ ) . (15.3.7)
) - . -1
1]

Equation (15.3.6) may be used in experimental determinations of diffusion coefficients,
by measuring the molar flux of the diffusing species as a function of time {e.g., in gas
diffusivity measurements in liquids or solids, where the change in pressure can be recorded).
A plot of the experimentaily measured values of N, against +~1/2 then yields a straight
line of slope e(X, — X:)(Dap/7)!/2.

Another method used frequently to measure diffusivities in liquids consists of filling a
capillary tube with the liquid solution and then immersing the open upper end of the tube
in a solution of higher concentration of the diffusing species A. After a given time interval,
the capillary is withdrawn and its contents are analyzed. Let us assume that the initial
concentration of A in the capillary was X; and that the concentration of A in the bulk of
the melt is maintained constant at X, throunghout the experiment, After a time interval {.,
a length L of the capillary is analyzed and found to have an average concentration X,,..
From (15.3.7), the total quantity of A that has diffused into the capillary in time ?. is

1/2
Nated —2c(Xb—X)(@) A, (15.3.8)

where A, is the cross-sectionai area of the capillary passage.
By equating this quantity to the change in the amount of species A contained in the
capillary passage of length L, before and after diffusion, we obtain:

—

12
1. :
2e(Xp — X;) (D%) Ac = ¢(Xaye — X:)LA., (15.3.9)

and

X:we "‘X:' _ 2 DABte 172
L( ) : (15.3.10)

Xb—X,' o T

The diffusivity, D 4 g, is then calculated by inserting the experimentally determined values
in (15.3.10).

15.3.2. Unsteady State Diffusion at Variable Diffusivity

For systems where the diffusion coefficient is concentration-dependent, the differential equa-
tion for diffusion is expressed by

3(GXA)_=_‘% [DAB eXa)

= G| (15.3.11)
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S i

R

Figure 15.5. Unsteady state diffusion in a liquid-liquid system,

where D 4p is a known function of concentration, f(¢X). This equation can be solved by
means of the finite difference technique which was discussed in Chapter 11 for unsteady-state
heat conduction or by other numerical methods.

15.3.3. Unsteady State Diffusion in a Two-Phase System

Let us consider a reaction system of two semi-infinite media consisting of two immiscible
stagnant liquids, e.g., the slag and metal layers in a furnace. As illustrated in Fig. 15.5, the
upper slag phase is considered to extend from y = 0 to y = o0, and the metal phase from_
v = 0 to y = —oo. Let us assume that species A diffuses through the metal layer and at
the metal-slag interface undergoes a chemical reaction through which it is transferred to the
slag phase:

[4] = (A).

The species (A) must now diffuse away from the interface through the slag layer. Because
of the high temperature of the system, the rate of the chemical reaction at the interface is _
very fast and the overall rate of removal of A from the metal depends solely on the rates of
diffusion of A through metal and slag.

At time ¢ = 0, the bulk concentration of the diffusing species A is assumed to be
uniform at ¢, and ¢, 3 in the slag and metal phases respectively. At the interface, the
concentrations of the diffusing species A in the two phases are at chemical equilibrium
(Chapter 18) which is expressed by

K, = ‘2“-‘, (15.3.12)

where K, is called the distribution coefficient of A, and the subscript e denotes equilibrium
conditions. In the absence of bulk flow effects, Fick’s second law of diffusion is expressed
as follows for each of the two phases:

8e, 0%,
ot "" Da-, W for 0 <y < o0, (15313)
dcm 52

Cm
—_= e — > Yy > —00. .3.14
5t DAm&yz for 02>y > —c0 (15.3.14)
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Four of the boundary conditions express the initial concentrations in the two phases
and also the concentrations at far away from the slag-metal interface:

Cs=Cyp att=0and all g, (15.3.15)

em=Cmp @t t=0andally, (15.3.16)
Cs —* Cap at Yy — 00, (15.3.17)

. Cm = Cpp at § — —oo. (15.3.18)

The remaining two boundary conditions express the equilibrium at the reaction interface
and the fact that the rate at which the diffusing species A leaves the metal phase must be
equal to the rate that it enters the slag phase:

. _
a"i =K. at y=0,1t>0, - (15.3.19)
dc, 7]

Di-s = Di-m F";"- at y=0,1>0, (15.3.20)

Using a mathematical technique which was described in Chapter 11, the analytical
solution of the above system of equations is expressed in the form of the followmg com-
plementary error functions:

Y ‘ y
= C) + Cp erffc —=—= for 0 < y < 00,
] o . — . Y _ (15.3.21)
e = Ca + Cyerfc _M__ for 0 > y-Z —00, (15_3_22)

2¢/Dp_mt

where Cy, C;, Cs, and Cy are mtcgrahon constants the values of which must be detcrmmed
from the boundary conditions.

On the basis of the stated boundary conditions, at £ = 0 the value of the complementary
error function is O (see (11.2.5), Chapter 11) and the first two integration constants are
obtained from (15.3.21) and (15.3.22):

Ci=c¢csp, C3=

The other two constants must be estimated from the boundary conditions of (1-5.3.19) and
(15.3.20). At the interface (y = (), the complementary error function is equal to 1 (see
(11.2.5), Chapter 11} and (15.3.21) and {15.3.22) yield

Cs = Cop T+ Cae, (15.3.2_3)

em = Cmp + Ca. (15.3.24)
On the basis of the assumption of equilibrium at the interface (see (15.3.19)), (15.3.23)
and (15.3.24) can be combined as follows:

Cm,b +Cy

=K.. 15.3.25
csp + Co ( )
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Finally, by differentiating (15.3.21) and (15.3.22) with respect to y (Chapter 11) and
substituting in the boundary condition expressed by (15.3.20), we obtain a second equation

~ between C and Cjy:

C2 _ C.;
Dy, ( (ﬂ‘D,;g_st)lﬂ) =Dpum (—m’g) ) (15.3.26)
and after simplifying (15.3.26),

Da_ 1/2
A ") . (15.3.27)

Cy =0 (
-DA—m
Solving (15.3.25) and (15.3.27) for the integration constants Cz and C; we obtain

Kecyp —
02 — e B,b cm.,b

, (15.3.28
DA.m e
Cp = —ielub = Cmb (15.3.29)

1- K. (%j-f)m’

Therefore, the concentrations (15.3.21) and (15.3.22) can now be written in their full
form:

Keca b — Cmb Y
€, =Cop + . — erfe for 0 <y < oo, 15.3.30
1b (DAa)lfz_K 2 ’____DA__st y ( )
DA.m €
em = Cm.b + KeCob — Cmpp erfc vl for 0 >y > —oo. (15.3.31)
' DA m 1‘{2 2\/ DA_mt
1 - Kc DA.al
The flux of the diffusing species A across the interface is expressed by
dec, 8
Npcy=Npcm =-Dp_y 2t = —Dp_m=2 at y=0. (15.3.32)
Gy dy

Therefore, by differentiation of (15.3.30) and (15.3.31) we obtain the following equations
for the respective mass fluxes at the interface between the two phases:

DA..! 172 cha,b — Cm,b )

Na,=-— ( - ) T (15.3.33)
()" =
DA,m €

-DA,m ) 12 Keca,b — Cm,b

NA,m=_( pr | 1—Kc(%‘;'f)1f2.

(15.3.34)
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SIXTEEN

Mass Transfer by Convection

In Chapter 15, we examined problems where the predominant mode of mass transfer was by
diffusion. In convective mass transfer, which occurs only in fluids or fluidized solids, the
bulk motion of the fluid plays a major role in the transfer of the diffusing species between
two or more phases. )

As in the case of heat convection (Chapter 12), when the flow field is imposed by
external forces, mass transfer is said to occur by means of forced convection. Examples of
this are flow systems under pressure or electromagnetic forces. '

In the second group of convective mass transfer problems, bulk flow is due to internal
buoyancy forces within the fluid system. This phenomenon is cailed natural convection
and the density differences that cause it may be due to either concentration or temperature
gradients in the fluid. .

Similarly to other transport phenomena (Chapters 5 and 11), the formulation of the
mass convection equation is based on a material balance of the diffusing component A over
an infinitesimal volume element dz - dy - dz (Fig. 16.1). The resulting differential equation
is nearly the same as that developed in Chapter 15 for diffusion:,

0cX a
at

=V. [CDABVXA] -V- [c.XAu] +74. _ (16.1.1)

The only difference between (15.1.8) and (16.1.1) is that the velocity term u* in (15.1.8)
represented the net bulk flow due to diffusion (Chapter 14) while the term # in the above
equation represents the diffusion velocity u* plus the flow due to externally imposed forces
such as pressure and gravity gradients. It is obvious that in the case of forced or natural
convection these externally imposed velocities are predominant.

In many problems of forced convection, the fluid flow and mass transfer equations
can be considered separately; thus we may first determine the velocity distribution in the
flow field and then use it in the appropriate form of the differential mass balance equation.
Problems in natural convection are more complex because the fluid flow and mass transfer
equations are coupled and must be solved simultaneously.

The analogy between heat and mass transfer, which has already been mentioned, can be

_ utilized frequently to obtain the solution of a mass transfer problem from the corresponding

equations for heat transfer by convection, and vice versa. Exceptions to this rule are problems

245
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dc
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ﬂ '(D“”%Z'A)m
(efax) = N (eaux) xeds
—-cs & — 3
(D) ° / N — (D FA),
. P ,
s |
(cAul)r. (cﬂ.uy)y
..( Dm%): . .“(D‘\B%‘&)y

Figure 16.1. Control volume element for mass transfer by diffusion and convection.

| iquid film

N
Figure 16.2. Mass transfer from a gas to a falling film in laminar flow.

involving chemical reaction or when the net bulk flow due to diffusion is large enough to

modify the velocity profile.

16.1. FORCED CONVECTION IN LAMINAR FLOW

Let us consider the absorption of a species A diffusing from a gas phase into a laminar film
of liquid B flowing downward {z-direction) on a vertical wall (Fig. 16.2). It is assumed that
the rate of mass transfer of A through the gas phase and its rate of absorption in the liquid
surface are very high so that the concentration of A at the surface of the film is maintained
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at the saturation, or equilibrium, concentration, ¢4 .. If the initial concentration (i.e., at the
top of the wall, z = 0) of A in the liquid is ¢4 o, the problem is to develop an expression for
the concentration profile of A, as the film moves downwards. Problems of this type occur in
absorption or desorption processes, such as the removal of sulfur dioxide from plant exhaust
- gases by caustic solutions.

If we assume that the laminar flow in the film is fully developed, that is, the film
thickness and the velocity profile are constant with vertical distance down the wall, the
conservation of A can be expressed by (16.1.1), which in this case simplifies to

2
u=%=DA33

CA - -
- 4 for 0<y <Y, . (16.12)

By
where ¥ is the axis perpendicular to the direction of flow and Y is the thickness of the film
(Fig. 16.2). It can be seen that for unidirectional flow, as implied by the assumption of fully
developed laminar flow in the z-direction, the y- and 2-components of velocity in (16.1.1)
have been neglected.

The boundary conditions for (16.1.2) are

ca=cap at z=0and 0 < y <Y, (16.1.3)

ca=ca,. at y=0and all z, (16.1.4)

where y = 0 denotes the outer edge of the film in contact with the gas phase and Y is
the full thickness of the falling film. Also, the fact that A cannot diffuse into the wall is
expressed by the following equation:

%“ =0 aty=Y and all z. (16.1.5)

Before we can proceed with the solution of (16.1.2), we must obtain an expression for
the velocity profile in the film. In the discussion on falling films in Chapter 4, it was shown
that the velocity profile in the liquid film is parabolic:

" '=.um,- [1 ~ (%)2} , (16.1.6)

where umax denotes the maximum velocity:

pgY? '
max = - 1.7
u o™ (16.1.7)
The average velocity of the fluid is:
—_ 1 _2
T=v fudy =3 (16.1.8)

where ¥ is the volumetric flow raie of liquid per unit width of the wall.
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By combining (16.1.2) and (16.1.6) we obtain:

y\2\ Bcq 8%cy

Pigford {7] derived the following solution of -(16.1.9) for the boundary conditions (16.1.3)—
(16.1.5):

CAe = CAz _0.061 + 0.7857¢ 52137 4 0.1001¢~%9-318
CA,e —CAD (16.1.10}
+ 0.03599e 105847 1. 0 01811204757

where cg4,. is the equilibrium concentration of A in the liquid and €49 and €4 - are the
average concentrations of A across the film at £ = 0 and at distance o down the wall, i.e.,

Y
1
CAz = ?ch dy atz, (16.1.11)
D

and 7 represents dimensionless time, which we encountered earlier (Chapter 15) for diffu-
sion: Dant
AB :
=7 (16.1.12)
In this case, the time of contact ¢ between the ga§ and liquid phases is equal to the distance -
travelled by the flvid, z, divided by the surface velocity, i.¢., the maximum velocity of the

fluid film, ¥max. Therefore, since for laminar flow in a film %max = %ﬁ,

_-DAB T _-DAB xT
T Y2 umex Y2 15T

(16.1.13)

It should be noted that (16.1.10) contains the constant 0.061 which is not shown in
previous publications of this equation (e.g., [3,4,5]) including the 1944 paper by Johnstone
and Pigford [6]. If the equation is to include only the first four terms of the series, as
shown above and in earlier publications [3-6], this constant is necessary to satisfy the initial
condition of (ca,. —€ap)/(ca,. —Cap) =1, at z* = 0. A plot of (16.1.10) is shown in
Fig. 16.3.

16.2. FORCED CONVECTION IN A LAMINAR BOUNDARY LAYER

We will now consider the problem of mass transfer from a flat surface (e.g., by sublimation
or evaporation) to an incompressible fluid flowing over the plate (Fig. 16.4). The bulk fluid
velocity is uy, and the concentration of the diffusing species A in the bulk fluid, ¢4 5. Let
us also assurne that, at the surface of the plate, the concentration of A is maintained at the
saturation concentration, ¢4 ,. The problem is to develop an equation for the concentration
profile of A in the fluid above the surface. An example of this sitvation is the transfer of
water vapor from a wet surface to the air flow above it.
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Figure 164, Velocity and concentration boundary layers in laminar flow along a flat plate.

16.2.1. The Concentration Boundary Layer

In physical terms, the situation depicted in Fig. 16.4 can be visualized as follows: The fluid
near the plate is retarded because of viscous momentum transfer, and a region is formed
where the fluid velocity is lower than in the bulk stream. As discussed in Chapter 6 on fluid
flow, this region is called the velocity boundary layer. Also, in Chapter 12, we described
how in heat transfer the retardation of the fluid close to the surface leads to the formation
of a thermal boundary layer. '

In a similar way, we can visuvalize a film of fluid next to the surface in which the
concentration differs from that in the bulk stream; this region is called the concentration
boundary layer (or diffusion boundary layer). As discussed in Chapters 6 and 12, the
equation of continuity for the two-dimensional flow in this boundary layer is expressed as

follows:
o dus , Ouy

7 ay = (16.2.1)
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while the equation of motion is

6“:: auz p’ 321‘"-‘5

Uz _é; +‘U-y ay = ; 3_‘1;2 (162.2)

The boundary conditions for the above equations are:
s =0, u, =0 at y =0 (plate surface),

Uz = Up, Uy =0 at y — oo (away from plate surface),
Uz = Up, Uy =0 at z=0 forall y. (16.2.3)

The equation of conservation for the diffusing species A can be obtained from (16.1.1),
on the basis of the following assumptions:

a. There is no chemical reaction (74 = 0).

b. The z-component of velocity is neglected (two-dimensional flow).

c¢. Diffusion in the z-direction is negligible in companson with the transport
of mass by bulk of the fluid, i.e.,

fca &%
s g >>DABa:'

-Accordingly, (16.1.1) simplifies to:

dea Oca 8%
=5 =2 4, ¥ =Dap 8y; (16.2.4)

The velocity boundary conditions for this equation are the same as for the equations of
motion (see (16.2.3)). The concentration boundary conditions are

ca=cCasaty=0, ca=capaty— o0, ca=capatz=0. . (16.2.5)

The method of solving these equations is identical to that discussed in Chapter 12
for heat transfer by forced convection through a thermal boundary layer: The analytical
solution for the velocity profile in a boundary layer was developed in Chapter 6 (§6.2. 1)
and is expressed by the following equation:

Uz

3 1,4

—=fl)=5n-37, ' (16.2.6)
Uy
where . y
Y _ ¥y 16.2.7),
g 0z 4.64/vzfuy ( )

and §, is the thickness of the boundary layer as a function of distance  from the leading edge
of the plate. In order to solve the mass balance of (16.2.4), we first define a dimensionless
concentration as follows:

(16.2.8)
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Figure 16.5. Dimensionless concentration profiles in the laminar boundary layer along a flat
plate.

By introducing the‘variable ¢ and the transform variable n in (16.2.4), we obtain

di¢ 1 dé
F + E Sc f('q) d_':‘? = 0, (1629)

where Sc is a dimensionless group called the Schmid¢ number which will be discussed in

the following section:
v 1 -
Sc = = . 16.2.10
Dag  pDap ( )

The boundary conditions of 16.2.5 -are now transformed to dimensionless form:

t=0atn=0, . - (16.2.11)

E=1 at p— oo. (16.2.12)

The solution of (16.2.9) for these boundary conditions is shown in graphical form in Fig.
16.5 as a function of the Schmidt number.

16.2.2. The Schmidt Dimensionless Number

As shown by (16.2.10), the Schmidt number represents. the ratio of the momentum diffusivity
to the mass diffusivity of a particular flunid. It corresponds to the Prandtl number for heat
transfer by convection (Chapter 12). When the Schmidt number is near unity, as it is for
some gases, the velocity and concentration boundary layers coincide and the equations for
the dimensionless velocity and concentration profiles are identical.

For high values of the Schmidt number, as in the case of all liquids, the ability of
the fluid to transmit momentum is much greater than its diffusivity, and consequently the
velocity boundary layer is thicker than the concentration boundary layer.

The effect of Schmidt number on the concentration profiles in the boundary layer is
illustrated in Fig. 16.5. Comparison of this graph with the equivalent plots of the dimen-
sionless temperature profiles in the boundary layer (Chapter 12, Fig. 12.6) shows that the
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Figure 16.6. Effect of homogeneous chemical reaction on the concentration boundary layer,

two plots are identical; i.e., the Schmidt number in mass transfer has the same significance
as the Prandtl number in heat transfer by convection.

For gases, both the Schmidt and the Prandtl numbers are close to unity. For viscous,
low-conductivity fluids, such as slags or molten glass, the Prandtl number is in the order of
10-1000, while for molten metals it is much less than unity. The Schmidt number is high
for all liquids, including molten metals and slags.

16.2.3. Mass Transfer with Chemical Reaction

Let us consider a system where a fluid flows over a flat plate. Species A diffuses from the
plate into the fluid stream, where it reacts with the stream according to the following rate
equation:

7 = —k:c}, (16.2.13)

where 7 is the rate of the homogeneous chemical reaction (Chapter 18); k. is the specific
rate constant; n is the order of the chemical reaction (Chapter 18).

For an incompressible fluid and for low concentration of the diffusing species, this
problem is analogous to that discussed in §16.2.1. Thus, the fluid flow equations are identical
to (16.2.1) and (16.2.2), while the conservation of A is expressed by

2
'5:9 g 36 —Dap %cj ~ k. (16.2.14)

The boundary conditions are similar to (16.2.3) and (16.2.5). The solution of this
system of equations is described in the literature [3]. As illustrated in Fig. 16.6, the effect
of the chemical reaction is to narrow the concentration boundary layer and thus increase the
rate of mass transfer from the plate.

16.3. NATURAL CONVECTION IN A LAMINAR BOUNDARY LAYER

In the absence of chemical reaction and for low concentrations of the diffusing species, the
equations for mass transfer by natural convection are analogous to the corresponding heat
transfer equations, as discussed in Chapter 12.

As noted earlier, natural convection occurs under the influence of buoyancy forces
which may be due to either concentration or temperature gradients. For instance, let us
consider the transfer of diffusing species A from a vertical wall immersed in a liquid bath
(Fig. 16.7); the fractional molar concentration of A at the plate surfacc is X, and in
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Figure 16.7. Mass transfer by natural convection at a vertical wall.

the bulk of the fluid, X4 ;. The formulation of this problem is almost identical to the
corresponding case of heat transfer case discussed in Chapter 12:

. . . Ouz  Ouy _ _
equation of continuity: 5z " By 0, (16.3.1)
Ou. ~ Ou 8%u,

equation of motion: u. B + u, a—; =v + 9.0 (Xa,0—Xay), (16.3.2}

3y?
where g, is the component of the acceleration due to gravity in the z-direction; g’ is
the coefficient of density change of fluid with X4 (see (16.3.7)); X4, is the fractional
concentration of A at distance y perpendicularly from the plate surface. .
The material balance equation for species A is as follows:

0Xa .  0Xa _ . 9°Xa
oz T ey DAB T

(16.3.3) .

Uz

The boundary conditions for (16.3.1)}+(16.3.3) are
u==uy=0afy=0, u, =0aty — oo

Xay=Xasaty=0, X4,=5Xapaty— o0,

Xa=Xapatz=0 forally. (16.3.4)
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Figure 16.8. Dimensionless vclocitf and concentration profiles for laminar natural convection
along a vertical wall.
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Figure 16.9. Velocity and concentration boundary layers for a dissolving surface (e.g., a copper
anode},

The solution of this system of equations is derived in the same way as for the corre-
sponding case of heat transfer by natural convection (Chapter 12). The resultant velocity
and concentration profiles are plotted in Fig. 16.8 as a function of the dimensionless distance

parameter:
1/4
y {Gr
==1|— 16.3.
=2(%) (16.8.5)

where Gr' is the dimensionless concentration Grashof number to be described shortly.
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These plots are identical to the plots of heat transfer by natural convection (Figs. 12.8
and 12.9) with the exception that the dimensionless Prandtl number (Pr = C,u/k) has
been replaced by the Schmidt number (Sc = p/pD 4 p); also, the dimensionless temperature
gradients have been replaced by the dimensionless concentration gradients which are now
causing the buoyancy forces in the liquid. The concentration Grashof number is defined as

follows: Sg(x. _ X )
G = =P (y; — %), (16.3.6)
where L 8 )
f=- (_a;A)T (16.3.7)

is the fractional change of density of the fluid with mole fraction of A, and X, and X
are the mole fractions of A at the surface and in the bulk fluid; = is the distance from the
leading edge of the surface.

Figure 16.9 shows the velocity and concentration profiles and also the respective bound-
ary layers for the case where X, is higher than X}; for example, this case exists in the anodic
dissolution of copper from a vertical anode plate. Figure 16.9 would be reversed in the op-
posite case of electrodeposition of copper on a vertical cathode plate, where X, is lower
than X, _

It can be seen that the Schmidt numbers in Figs. 16.5 and 16.8 are in the range of
Sc > 0.72. As noted earlier, the Schmidt numbers for gases are in the order of unity, while
for liquids they are much higher. Therefore, the concentration (or “diffusion™) boundary
layer for liquids is much smaller than the corresponding velocity boundary layer (Fig. 16.9).
An important result of this behavior is that a slight convective motion in a liquid can produce
a large increase in the rate of mass transfer.
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SEVENTEEN

Mass Transfer Models and Correlations

In Chapter 16, we examined methods of formulating and solving problems of convective
mass transfer in the laminar region of flow. It was shown that the solution of the differential
equations of motion and diffusion can yield the concentration profiles of the diffusing species
in a system. _

In many mass transfer problems, we do not need detailed information on the concen-
tration profiles in the system, but only a reliable estimate of the mass transfer between a
fluid and a solid surface, or between two fluids. In principle, this can be done by first
establishing the concentration profile near the interface between the two phases and then
using it to calculate the mass flux, by an equation of the type shown in Chapter 15:

Nay=—cDyp —a;fTA + Xa(Na,y +N3'y), (17.1.1)
where ¢ is the molar density of fluid, and N4, and Npg , are the molar fluxes of components
A and B in the y-direction. '

However, in many cases this procedure is not practical, because of the geometric com-
plexity of the system or for other reasons. It is then necessary to use published information
on similar systems of carry out experiments, in order to determine the rate of mass transfer.
This is particularly the case for turbulent systems, where the velocity and concentration
profiles cannot be determined from first principles.

17.1. THE CONCEPT OF THE MASS TRANSFER COEFFICIENT

In order to provide a rational framework for the development of semi-empirical mass transfer
correlations, the concept of the mass transfer coefficient has been introduced. Let us consider
a fluid flowing past a surface (Fig. 17.1) where the concentration of the diffusing species A
is ¢4, at the surface and c4p in the bulk fluid. If the molar flux between the surface and
the bulk fluid is N4, the mass transfer coefficient is defined by the following equation:

Na= kd(c,q', - cA,b)- (17.1.2)

Equation (17.1.2) states that the mass flux between the surface and the bulk fluid is
proportional to the concentration difference between the surface and the bulk of fluid; the
constant, of proportionality, kg, is defined as the mass transfer coefficient. Inspection of
(17.1.2) shows that the mass transfer coefficient, k4, has the following dimensions:

molar flux mass flux Mt L2
i = — _

— = — = =Lt 1
molar concentration  mass concentration ML-3 _
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Figure 17.1. Definition of the mass transfer coefficient

It can be seen that the dimensions of k; are the same as those of the ratio of molecular
diffusivity divided by the thickness of an assumed boundary layer(LZ t~1/L). In effect, the
mass transfer coefficient is a composite measure of the mass- diffusion coefficient and the
thickness of the boundary layer, through which species A must diffuse in order to reach the
bulk fluid. - '

As in the case of the heat transfer coefficient (Chapter 12), we may use the analogy
with Ohm’s law and regard the concentration difference as a potential, the mass flux as
electric current and the mass transfer coefficient as the conductance, that is, the reciprocal
of resistance.

17.2. ANALYTICAL CORRELATIONS OF THE MASS TRANSFER COEFFICIENT

As would be expected from theory, the mass transfer coefficient depends on geometry, fluid

velocity, properties of the fluid and concentration. For unsteady state situations, the mass

transfer coefficient may also depend on time.

_ Values of mass transfer coefficients may be obtained either experimentally or from
empirical or semi-empirical correlations established by others. When analytical solutions

are available for the concentration profile in a system, such correlations can be based on

first principles, as illustrated in the following cases.

17.2.1. Laminar Forced Convection over a Flat Plate

This problem was discussed in Chapter 16 (§16.2.1) for laminar flow and the calculated
concentration profiles were shown in Fig. 16.5 as a function of Schmidt number and the
" group y(us/vz) /2. From this analytical correlation and the definition of the mass transfer
coefficient (see (17.1.2)), it can be shown that, for laminar flow and low concentration of
the diffusing species, kg can be expressed as follows: '

ki .T Zupp 1/2 i 1/3
—== =0.332 —_—— , 17.2.1
Dag ( 7 ) (PDAB) ( )

where kg - is the local mass transfer coefficient at location & and 1, is the bulk velocity of
the fluid in the z-direction.

The dimensionless group on the left-hand side of this equation is called the Sherwood
number and is analogous to the Nusselt number for heat transfer (Chapter 12). The groups
in the parentheses on the right-hand side of the equation will be recognized by the reader
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as the Reynolds and Schmidt numbers, both of which were introduced earlier (Table 2.1).
Therefore, (17.2.1) may also be written as follows:

Sh, = 0.332Rel/2Sct/3, _ (17.2.2)

where Sh; and Re, represent the local Sherwood and Reynolds numbers at location z. In
general, the Sherwood number is defined as '

ki kL
Dasp/L Daup'

Sh (17.2.3)

where L is the characteristic length of the system. .
We can now obtain the mean value of the mass transfer coefficient, and hence of the

Sherwood number, by performing the following integration over the entire Iength L of the
diffusing surface: '

L L
1 , 1 Dag (zupp 1/2 H 1/3
kd ave =—fkd =d% =_—_/O.332——-—- (— dz
’ L ' L D
4 4 z H pLaB

_ : (17.2.4)
—0.664248 (L“bp)m ( f )”3
L 7 pDan ’
and therefore - . '_
Shave = % f Sh, dz = 0.664Re'/2Sc!/3, (17.25)
0

where Sh,.. is the average Sherwood number over the length L.

17.2.2. Natural Cdnvection fron:i a Vertical Piate

Mass transfer by natural convection from a vertical plate in the laminar region was discussed
in Chapter 16 and the computed concentration profiles were shown in Fig. 16.8. By intro-
ducing the definition of the mass transfer coefficient in the boundary layer equations (§16.3)
and calculating the first and second derivatives, the analytical results can be expressed in the
form of the following correlation for the local Sherwood for mass transfer from a vertical
plate by natural convection:

Gr,\”*  0.9025c/2
- B ( 4 ) (0.861+ Sc)1/4’ (17.2.6)

where Gr’, is the concentration Grashof number for mass transfer at distance x from the
leading edge of the plate.

17.3. MODELS OF MASS TRANSFER

The mass transfer correlations presented in §17.2 were derived from the rigorous formula-
tion and solutions of the differential equations of continuity, motion, and diffusion for the
particular problem. A less rigorous but more convenient approach is to represent the actual
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system by a simplified mathematical model. Such model equations generally contain some
parameters which must be either measured experimentally or estimated.

17.3.1. The Stagnant Film Model

To illustrate the use of the film model, let us consider the case of fluid flowing past a
solid surface. The concentration of the diffusing species is ¢4, at the surface, and ¢4
in the bulk of the fluid. Instead of attempting to solve the equations of fluid flow, which
in many instances may be impossible, we shall “idealize” the system by assuming that all
resistance to mass transfer is confined to a stagnant layer of thickness § adjacent to the
surface. Therefore, the concentration at the outer edge of this film is ¢4 3.

The problem is now reduced to steady state diffusion through a stagnant film of thick-
ness § caused by a concentration difference of €aA,s — CAb. This problem was solved in
Chapter 14 to yield the following equation of the molar flux of A:

cDa—p (Xa,—Xap)
6 XM

Nay= : (17.3.1)

where ¢ is the molar density of the fluid; X4,, and X4 are the mole fractions of A at
surface and at the outer edge of the film; Xp yp is the logarithmic mean of the initial
and final mole fractions of component B (Xp = 1 — X4}, as defined in Chapter 14 (see
(14.7.14)). |
Equation (17.3.1) can also be expressed in terms of the molar concentranons of A and

B as follows:

_ ¢cDap
NA,y = cn.a {ca,s —cap), (17.3.2)

where c¢g ra is the logarithmic mean concentration of species B.
Companson of the above equation with the deﬁmt:on of the mass transfer coefficient
(see (17.1.2)) shows that
cDap

ks = ;
d Scp, Ly

(17.3.3)

When c4,, and cap < ¢, i.e., at low concentrations of the diffusing species A, we have

CRCP LM,
and t_herefore, D
ky= —;E. (17.3.4)

It may appear that (17.3.3) and (17.3.4) offer a direct way of evaluating k;. However,
* this is not true because the thickness of the conceptual film, §, is a function of the same
parameters as the mass transfer coefficient: velocity and properties of the fiuid, geometry,
concentration Ievels, and so forth. Nevertheless, the stagnant film model is useful in that it
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Figure 17.2. Film model for mass transfer.

provides a simple physical picture of resistance to convective mass transfer which can be
used as a basis for correlating mass transfer coefficients.

For instance, Fig. .17.2 depicts the concentration profile next to the cathode in an
electroplating cell. The tangent of this plot at a point near the surface intersects the horizontal

line representing the concentration of the bulk electrolyte at a distance § from the cathode
surface.

This conceptual film of thickness & is often called the diffusion layer. For laminar forced
convection of a liquid past a flat surface, the thickness of this film has been expressed as

follows [1]: {- %
INY? ru\! 1/3
=3|— = 3.
] (ub) (p) D)5, (17.3.5)

where L is the distance from the edge of the electrode in the direction of liquid flow; us
is the velocity of the bulk flow parallel to the surface; D4 is the diffusivity coefficient of
diffusing ions in the electrolyte.

Under the same conditions but in turbulent flow, the thickness of the diffusion layer
can be expressed [1] by -

01 /g 17/30 1/ :
5= 5 (;) DY3 = LRe 09 §c~03%3, (17.3.6)
0 .

It can be seen that in the case of turbulent flow the local mass transfer coefficient is much
less dependent on position, L, than in laminar flow.

17.3.2. The Surface Renewal Model for Mass Transfer

There are some cases when mass transfer occurs as diffusion through a genuinely stagnant
film, such as a capillary tube, a membrane, or a porous medium. More frequently, the
assumption of a stagnant film is an idealization of a fairly complex flow situation.

An alternative, and in many cases more satisfactory, model for mass transfer is the
surface renewal model also known as the Higbie model [2]). This mode! postulates that
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Figure 17.3. Surface renewal model.

a fluid element comes in contact with the surface for a certain time period, during which
unsteady state diffusion occurs between the fluid element and the surface. At the end of
this time period, the fluid element is swept away from the surface and replaced by a new
element from the bulk. While these assumptions may appear at first sight to be unrealistic,
the surface renewal model has found many applications in materials processing.

Let us consider a turbulent fluid stream flowing over a surface (Fig. 17.3); the concen-
tration of the diffusing species at the surface is ¢4 , and the concentration in the bulk of the
fluid is cap. The model equations are expressed by assuming that for a very short time of
contact between the surface and a fluid element, the latter is semi-infinite in thickness; in
other words, the contact time is so short that the concentration gradient in the element does
not reach the side of the element away from the surface. '

Under these conditions, and for low concentrations of the diffusing species so that the
bulk flow due to diffusion is negligible, the diffusion equation in the fluid element is

Bca 2

—— =Dag

5 B for0<y<ocand 0 <t <1, (17.3.7)

where the time interval . is the contact time, i.e., the residence time of the fluid element at
the surface. The boundary conditions are

ca=ca, at y=0, (17.3.8)
cA=CAp at y — 0o, (17.3.9)
ca=cap at t=0. (17.3.10)

The solution of this system of equations was discussed in Chapter 15 and provides the
concentration profile in dimensionless form:

CA—CAB
— . =erfc Y

CA,s —CAB 2+/Dapt

Also, the molar flux of A crossing the plane ¥ = 0 is expressed by the concentration gradient
(see (15.3.6), Chapter 15):

(17.3.11)

DA.B 1/2
NA = "‘-DAB (——) = (CA., - CAJ,) (——) . (17.3.12)
4=0 xt
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uy

Figure 17.4. Surface renewal model for bubble rising in a liquid.

The average value of the molar flux over the time interval ¢, is (see (15.3.7), Chapter 15):

1/2
Das ) . (17.3.13)

i,

:
1 .
Nave = T /NA dt =2(cap—cap) (
°0

Comparison of (17.3.13) with the definition of the mass transfer coefficient (see (17.1.2))
shows that, for low concentrations of the diffusing substance, the mass transfer coefficient

can be expressed as follows:
Dap\'?
ki=2 ( ) . (17.3.14)

Tie

‘We can see that the most important parameter of the surface renewal model is the contact
time, ¢.. In most cases, the value of ¢, must be deduced from experimental measurements
of the mass flux. However, there are some practical situations where ¢, can be estimated
directly and then be used to calculate k; from (17.3.14).

For instance, in the case of a bubble rising in a liquid, the contact time between the
bubble and a fluid element in its path starts when the fluid element touches the top of the
bubble and ends when it reaches the bottom (Fig. 17.4); this time interval is calculated from

=B

te '
Uy

(17.3.15)
where dy and u are the bubble diameter and velocity, rcspeétively. Since the rising velocity
of bubbles in liquids is well established, the surface renewal model provides a convenient
way for estimating the mass transfer coefficient.

The same model can be used for problems where a large bubble passes across the
interface of two immiscible liquids (e.g., metal-slag) or the surface of a liquid reacting with



2¢4 N, J. THEMELIS .

the gas above it. In this case, the bubble disrupts the interface and therefore “renews” the
fluid elements at that location. Despite the difficulty of estimating accurately the surface
area “disrupted” by the passage of the bubble, this mode! offers a convenient tool for the
calculation of mass transfer rates, as illustrated in the following example.

Example 17.3.1

The surface of a molten steel bath, of bulk concentration 0.03% oxygen by weight, is in
contact with the atmospheric air. The surface layer is saturated with oxygen at a concen-
tration of 0.16% oxygen by weight. The surface is disrupted by-carbon monoxide bubbles
rising through the metal to the surface at a frequency of 1200 bubbles per second per m?2
of surface area; the surface area disrupted by each rising bubble is estimated at about 15
cm?. The diffusivity of oxygen in the metal may be taken as 1.2 x 10~% cm? s71, and the
density of steel is 7.1 g cm™3 '

Assuming that the oxygen transfer process to the melt can be represented by the surface-
renewal model, calculate: a) The mass transfer coefficient, b) the mean mass flux of oxygen
to the surface.

a. The average contact time can be estimated from the frequency of bubbles per square
meter and the area “renewed” per bubble:

10000 cm?
t, = = 0.555.
1200 bubbless—1 x 15 cm? per bubble 5

The mass transfer coefficient is then calculated from (17.3.14):

D 1/2
ka=2 ( ﬂ’;f’) =1.66 x 10~2 cm?s™ 1. (17.3.16)

-

b. The average mass flux of oxygen at the surface is
NA'n\re = kdp(X; - X;)' (17.3.17)

where p is the density of steel; X and X are the mass fractlons of oxygen in the surface
layer and in the buik fluid. 'I'herefore,

N ove = 1.66 x 1072 x 7.1 x (0.0016 — 0.0003) = 1.53 x 10™* gs~' cm™2.

It is interesting to estimate the equivalent “film thlckncss" from the stagnant film model
(see (17.3.4)):

5= Dap _ 1.2 %104

F = Tegw 10=3 = 0007 cm = 70 microns.
d .

17.4. MASS TRANSFER CORRELATIONS

Values of mass transfer coefficients can be obtained either by direct measurement or by
means of existing semi-empirical correlations. Such’ correlations are usually presented in
terms of the dimensionless numbers discussed earlier. Some of the important correlations
in materials processing are described in the following sections.
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As in the case of heat convection (Chapter 12), when the temperature of a fluid property-
in a mass or heat transfer correlation is not specified, the property should be calculated at
the mean film temperature which is defined as the average of the bulk flow temperature
of the fluid and the temperature at the surface:

(Tbulk + Tsurfn.ce)

Tﬁm— 2

Some correlations are based on a limited number of experimental data; therefore, their
validity is limited to the particular geometry and to the range of Reynolds (or Grashof) and
Schmidt numbers covered in the original study. Consequently, great care must be exercised
if such correlations are extrapolated beyond the range studied, or if they are used for systems
much different than those in which they were obtained.

Mass transfer corrélations are usually expressed in the form of Sh = f(Re, Sc), for
forced convection and Sh = f(Gr’, Sc), for natural convection. In general, there are many
more correlations available for fluid-solid systems than for gas-liquid and liquid-liquid
systems, especially at high temperatures.

17.4.1. Mass Transfer to Spherical Particles

As in the case of heat transfer (§12.6.3), mass transfer to spheres varies with location and the
maximum value is attained at the foremost point of the sphere with respect to flow. However,
the following correlations refer to the average value of the mass transfer coefficient over
the entire surface of a sphere.

One of the earliest studies on the subject of mass transfer was by Frossling [3], who
determined the evaporation of various liquid droplets and the sublimation of naphthalene
spheres in a hot air stream. The data covered particle Reynolds numbers from 2 to 1300.
Frossling showed theoretically that the Nusselt number was proportional to Re!/? and the
experimental results confirmed this. Experimental work with different liquid systems resulted
in the value of the exponent of the Schmidt number equal to 1/3. The final equation for
mass transfer was :
Sh = 2 + 0.552Re)508¢%%%, - (17.4.1)

where the Reynolds number is calculated at the relative velocity between the bulk fluid
velocity and the velocity of the particle.

One of the best known works on simultaneous heat and mass transfer is by Ranz and
Marshall [4], who determined the evaporation of water and benzene drops in air. Their
experimental results for mass transfer were correlated by the following equation:

Sh = 2 + 0.60Re)-508c%3%3, (17.4.2)

The above equation is of the same form as the Ranz-Marshall equation for heat convection
to spherical partlcles (Chapter 12).

The droplet size in the case of the Ranz and Marshall experiments was in the order of
about 0.1 cm. However, the validity of this correlation has been confirmed for much larger
particles by Evnochides and Thodos [5], who measured the evaporation rates from spheres
3.5 to 5 cm in diameter impregnated with water or nitrobenzene, and by other investigators.
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Figure 17.5. Variation of local mass transfer coefficient with location on a sphere at various
G’ Sc values [6].

Equation (17.4.2) is now generally used for estimating the heat and mass transfer to spherical
particles by convection.

An interesting study of mass transfer by natural convection to spherical particles has
been conducted by Schutz [6]. By making use of the fact that the limiting current in elec-
trodeposition is proportional to the mass transfer coefficient, this author measured local and
overall mass transfer rates to spherical cathodes immersed in a CuSO,—H;SO, electrolyte.
The variation of the mass flux, as expressed by the Sherwood number, with location on the
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Figure 17.6, Graphical representation of correlations for heat and mass transfer to spherical
particles [21].

surface of the sphere is shown in Fig. 17.5 at different values of the Gr’ Sc group. The
overall mass transfer coefficient to the sphere was represented by the following correlation:

Shpre—o = 2 -+ 0.59(Gr’ Sc)'/4. (17.4.3)

The above equation is very similar to the Wilke [7] correlation for natural convection from
flat plates, to be presented in the next section. ,

In the case of mass transfer by combined natural and forced convecl:on to a spherical
particle, Steinberger and Treybal [8] proposed the following correlation:

Sh = Shp.—q + 0.347(Re Sc'/2)0-62, (17.4.4)

where Sh is the Sherwood number for mass transfer in the presence of combined natural
and forced convection; Shge = 0 is the Sherwood number for mass transfer under natural
convection only (i.e., at Re = 0) and is expressed as follows:

Shpe=o = 2 + 0.569(Gr' Sc)°*® for Gr' Sc < 108, (17.4.5)

and
Shpe=o = 2 + 0.0254(Gr Sc)!/25¢%#4 for Gr' Sc > 10°. (17.4.6)

The Steinberger and Treybal correlation is based on a large number of experimental
data including those by Fréssling [3] and Ranz and Marshall [4] and encompasses both gas
and liquid systems of Schmidt numbers in the range of 0.6-3000.-and Reynolds numbers in
the range of 1-30,000.

Figure 17.6 [21] presents in graphical form a number of correlations for mass transfer
by forced convection to spherical particles. As is shown in Fig. 17.6, these plots also apply
to heat transfer by replacing the Schmidt number on the z-axis by the Prandtl number. The
analogy between mass and heat transfer is evident.
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17.4.2. Mass Transfer to Vertical Plates by Natural Convection

The rate of mass transfer from vertical plates in natural convection can be calculated by
means of the Wilke correlation [7]):

Sh = 0.673(Gr’ Sc)®%, (17.4.7)

which was based on data in the range of Schmidt number from 500 to 800,000 and in the
range of Grashof number 10%-10°.

. In Chapter 12 it was noted that for heat transfer by natural convection, the transition
from laminar to turbulent flow occurs at

GrSc > 10°.

Experiments by 1bl and Muller [9] on the electrodeposition of copper from copper
sulphate solutions showed that the “diffusion layer” next to the cathode became turbulent at
a higher value of the Grashof-Schmidt product:

Gr' Sc > 4 x 10M.

The Wilke correlation (see (17.4.7)) encompassed the range 4 x 108 < Gr' Sc < 5x 101
and therefore should be applicable only in the laminar flow. However, Fouad and 1bl [10]
studied the electrodeposition of copper in the range 2 x 10! < Gr’ Sc < 10'3, which i is in
the turbulent regime, and developed the followmg correlation:

Sh = 0.59(Gr’ Sc)®%6, (17.4.8)

It can be seen that this equation is very similar to the Wilke correlation. The data of other
investigators are also in good agreement with (17.4.7), as illustrated in Fig. 17.7 [18].

Mass transfer in natural convection is very important in the operation of electrorefining
cells, since it effectively determines the limiting current density and the current distribution
across the electrodes. An illustration of the application of mass transfer correlations in the
electrorefining of copper is presented in the following example.

Example 17.4.1

In an experiment on the electrodeposition of copper on a 7.62 cm high cathode (Fig. 17.8),
from a solution containing 0.467 M CuSQO4 and 1.471 M Hy50, (density pp = 1.165 g
cm~—3, viscosity pp = 1.61 cP) at 18°C, it was found that the limiting current was 297 A
m~2 (= 29.7x 102 A cm~2). In a copper electrolyte solution, the rate of electrodeposition
is equal to two components of electron flow: the current conveyed by the diffusing copper
ions plus the current due to the electron migration through the electrolyte. The second term
is represented by the transference number of Cu*™, which is the fraction of current carried
by the copper ions in the absence of concentration gradients, i.e., not by diffusion.
However, in order to increase the conductance of electrolytic solutions, an additional
component is added, which does not participate in the-electrode reactions and is called a
supporuug electrolyte, such as the HySO4 used here. In this case, the transference number
of Cutt, ¢cy+, is only 0.015 and the transference number of Ht ions, ty+, is 0.75. If the
dcposmon is limited by mass transfer between the electrolyte and the cathode, it is required
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Figure 17.7. Correlation for mass transfer between a liquid and a vertical plate, in natural
convection {18].

to calculate the mass transfer coefficient and compare with the value predicted from the
Wilke correlation (see (17.4.7)).

The limiting current was determined experimentally by gradually increasing the poten-
tial across the anode and cathode and recording the current. The limiting current density
is attained when further increase in potential has no effect on the current (Fig. 17.9). An
energy balance on the copper ions diffusing through the boundary layer and depositing on
the cathode yields the following equation for the mass transfer coefficient of copper ions:

7-'(1 - tCu‘H') -
nF(cCu""",b - cCu++,a) ’

kg cut+ = (17.4.9)

where { is the limiting current density; {o,++ is the transference number of copper ions; n
is the valence of the deposited metal (in this case, Cut™, n = 2); F is the Faraday number,
96500 coulomb; cou++p is the concentration of copper in electrolyte in bulk fluid (from
given data, co,++ 3 = 0.467 moles per 1000 cm3); Coutt, 4 18 the concentration of copper in
electrolyte at the cathode surface and, under limiting current conditions, can be assumed to
be near zero; Dg,++ is the diffusivity of cupric ions in the electrolyte and can be assumed
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Figure 17.8. Concentration boundary layer due to electrodeposition and natural convection in
an electrolytic cell.
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Figure 17.9. Limiting current density in the electrodeposition of copper [7].

to be equal to that of CuSOy in water (= 0.461 x 10~° ¢cm?® s~1); Dy, is the diffusivity of
hydrogen ions in water (= 1.6 x 1078 cm? s71).

Substituting numerical values in (17.4.9), we obtain the experimental value of the mass
transfer coefficient:

29.7 X 1073(1 — 0.015)

= (). -3 _1.
2 x 96500 x 0.467 x 103 0.325 x 10~2 cms

kacut+ =

=r
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Figure 17.10. Concentration profiles of Cut ™t and H' in the boundary layer next to a cathode
plate.

Thereforc,_for L = 7.62 cm, the Sherwood number (see (17.2.3)) is

0.325 x 1073 x 7.62
h= - .
S 0.461 x 10-5 536

In order to compare the experimental Sh with the Wilke correlation, we need to calculate
the Grashof,and Schmidt numbers for the system. The definition of the Grashof number
(see (16.3.6)) can be written in a slightly modified form as

, (17.4.10)

A Pa

where py and p, are the densities of the electrolyte in the bulk fluid and at the interface,
respectively. _ _ _

We now need to estimate the density of the solution at the interface. Figure 17.10
illustrates the concentration gradients of hydrogen ions and copper ions in the boundary
layer next to the cathode: The copper ions migrate across the boundary later to the interface
and their concentration decreases from cg,++ 4 to nearly zero at the interface. Electrical
neutrality in the boundary layer is established by the formation of a hydrogen ion concen-
tration gradient, as shown in Fig. 17.10. The diffusion of hydrogen ions away from the
cathode surface, is in balance with the net bulk flow caused by the diffusion of copper ions
towards the surface; therefore the net molar flux of hydrogen ions is zero. The reader may
recall a similar situation discussed in §14.7.1 (diffusion through a stagnant film). The energy
balance for the charge carried by the hydrogen ions is as follows:

nF kg u+ (cu+,a — cu+ p) — i+ =0, (17.4.11)
and therefore o

th+
nk (CH+|3 - CH-I-'b) .

kd,H+ = (17412)

If we assume that the Wilke correlation (see (17.4.7)) is applicable, the mass transfer
coefficients for CuSQ4 and H,SO4 must be proportional to their respective diffusivities in
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the electrolyte to the power of 3/4 (since all other prbpérties in the correlation are the same
for both ions):

kg cutt (DCuH' ) 3/

kay+ Dy+

By solving for the H¥ concentration from (17.4.9), (17:4.12), and (17.4.13), for Cout+ b =
0.467 M and co,++ , = 0, we obtain

(17.4.13)

(CH+,3 - CH+'5) = (.467 (

3/4
0.461) 0.75 0141 M.

1.6 1—-0.015

Since the concentration of acid in the bulk solution has been given as 1.471 M, the
concentration at the interface is 1.471 +0.141 = 1.612 M H,804. This molarity corresponds
to a density of 1.08 g cm™3 [13]). Therefore, the density term in the Grashof number (see

(174.10)) is
(pb — p,) _ 1.165—1.08 — 0.079.
P 1.08 A0

Using this value and introducing the other numerical values in (17.4.’), we obtain

_0.079 x 981 x 7.623 x 1.165?

J
Gr 0.1612

= 1.79 x 108,

Finally, as noted earlier, the Schmidt number is defined by

I 0.0161

Se = =
= oDger+  1.165 x 0.461 x 10-5

= 2998.

Substituting the calculated values of the Grashof and Schmidt numbers in the Wilke
correlation (see (17.4.7)), we obtain

Sh = 0.673(Gr’ Sc)®25 = 0.673(1.79 x 10® x 2998)°%° = 578,

It can be seen that the calculated value for the Sherwood number of 576 is in good .
agreement with the experimental value of 536.

17.4.3. Forced Convection over a Flat Plate

The following correlation has been recommended for forced convection over a horizontal
flat plate in turbulent flow [14]:

Sh = 0.037 Re%® 5¢%3%3, (17.4.14)

This correlation was found to represent well experimental data on the deposition of metals
[15] and the dissolution of carbon in iron melts [16].

An alternative to the Sherwood number for expressing the mass transfer coefficient is
the j factor for mass transfer, 34, which is defined as follows:

ja=gan (17.4.15)
uy :
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Figure 17.11. Mass transfer factor () vs. Reynolds number for the dissolution of uranium
spheres in liquid cadmium [17].

- where, as before, k; is the mass transfer coefficient, 4, the fluid bulk velocity, and Sc the
Schmidt number. Figure 17.11 is a plot of experimentally observed mass transfer factors,
for the dissolution of uranium spheres in liquid cadmium, as a function of Reynolds number
{17].

Example 174.2

Calculate the mass transfer rate from a uranium sphere (1.25-cm diameter) in a stream of
liquid cadmium flowing at velocity of 2 m s=1. At the system temperature of 500°C, the
properties of the fluid are [17]: density of liquid cadmium, p = 7.8 g em™3; viscosity
_ of liguid cadmium, gz = 1.84 cP = 0.0184 g s~ em™?; diffusivity of U atoms in liquid
cadmium, Dy_qgq = 1.6 x 10~% ¢m? s~1:

-Rc dpup _ 1.25X200x 7.8

= 106 .
B 0.0184. 06000
From Fig. 17.8, we find that for Re = 106000, j; = 0.0016. Also, the Schmidt number is
. 4
Som —# 0018 = 147.

pDa_p  T8x1.6x10-5
Finally, from the definition of j4, we obtain

k
ja= ;" Sc?/? = 0.0016 cms™*, .. kg =0.0115 cms™!,

Example 17.4.3. Mass Transfer from a Rotating Cylinder
The following correlation has been proposed by Eisenberg et al. [18] for the rate of mass
transfer from a cylinder rotating in a liquid bath:

k _
u“ = 0.079 Re 03 §c 644, : (17.4.16)
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where kg is the mass transfer coefficient between cylinder and liquid and u, is the peripheral
speed of rotation.

In an experiment by Olsson et al. [19], a 1.5-cm diameter by 5-cm long iron cylinder
~ was rotated at a speed of 775 rpm in a melt of carbon-saturated iron, at 1275°C. The rate
of dissolution, expressed as decrease of rod radius with time, was —5.57 x 10~% cm s™1.
For the dissolution of Fe in C-saturated Fe, the Fe 'mass concentration driving force was
estimated to be

AXE, = 0.385.

Compare the experimental rate of dissolution with that predicted by the above corre-
lation of Eisenberg et al. [18]. At 1275°C, the diffusivity of iron in the carbon-saturated
melt, Dp._yec, can be assumed to be 9 x 10~% cm? s~ and the kinematic viscosity of the
iron melt is 0.0141 cm? s~1. _

If it is assumed that the densities of the rod and melt are nearly equal, we have

dr
-—A-(-E = ke AAXp,,

where A is the surface area of rod in the melt, in cm?, and dr/dt the rate of dissolution of
the rod, in cm s~1. Substituting numerical values, we obtain the experimental value of k;:

—dr/dt _ 5.57 x 1073

kg exe = = =0.01 -1,
dewp = TRAXT 0.385 45 oms
The peripheral velocity is
= wd (rpm) _3.14x1.5%775 _ 60.8 cmsL,

60 60

. i
where d is the rod diameter. Therefore, the Reynolds number is

du 1.5 x 60.8 :
= — = ——— = 6470
Re== 0.0141 ‘
and the Schmidt number
Sew b _0o0u1

DFI.'.—FcC 9 x10-8

By substituting the above numerical values in the Eisenberg correlation, we calculate
the value of the mass transfer coefficient:

60.8 x 0.079

= -1
64700-3 x 1570-644 — 0.0133 cms™".

kd,mﬂc =

It can be seen that in this case there is good agreement between the experimental and
calculated values of k4.
17.5. ADDITION OF PHASE RESISTANCES IN MASS TRANSFER

In the preceding discussion and examples on the use of mass transfer coefficients, we
examined systems involving one fluid phase only, or systems where the resistance to mass
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Phase s

Figure 17.12. Mass transfer between two immiscible liquids.

transfer through a second fluid phase could be assumed negligible; for example, in the
case of a bubble bursting through the liquid metal/air interface, it was tacitly assumed that
the resistance to mass transfer through the gas phase was negligible in comparison to the
liquid-phase resistance.

In this section we shall consider the problem of mass transfer between two immiscible
fluids, which is in a way analogous to the development of an expression for the overall-
heat transfer coefficient (Chapter 12). The molar flux of diffusing species A between two
immiscible fluids s and m (Fig. 17.12) can be expressed as

Na = Fkas(esp — €a,i) = kam(Cm,i — Cmp), (17.5.1-17.5.2)

where k4,, and ka . are the mass transfer coefficients for diffusion of A in phases s and m,
respectively; c, » is the concentration of A in the bulk of phase s; ¢ 3 is the concentration
of A in the bulk of phase m; c,; and c,, ; are the concentrations of A at the interface and
in phases s and m, respectively.

It may be assumed that chemical equilibrium (Chapter 18) prevails at the interface
between the two phases, and therefore

== K, (17.5.3)

where K, is the equilibrivm constant, or distribution coefficient for A, between the two
phases s and m. '

By introducing (17.5.3) in (17.5.1)(17.5.2), we can eliminate the concentrations at the
interface to obtain

cha - c‘m.,
Ny = =g, (17.5.4)
ka,s k.t,r_n

The numerator in this equation represents the overall driving force for mass transfer, and
the denominator corresponds to the overall resistance.

It will be noted that this representation of the mass flux as the ratio of overall driving
force to resistance is similar to the equivalent equation for heat flux presented in Chapter
12 (see (12.7.2)). However, there is a basic difference between the definitions of an overall
mass fransfer and an overall heat transfer coefficient: In the case of heat transfer, as for
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Figure 17.13. Material balance on (a) an infinitesimal volume element, (b) a section element,
{c) the entire volume of the system.
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Figure 17.14. Absorption in a countercurrent-flow column.

example in a heat exchanger, the motion of the two fluids separated by the exchanger wall
can be considered independently of each other. This is clearly not the case in interphase
mass transfer where the two fluids are in direct contact, and the motion of one affects the

other.
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Consequently, the mass transfer coefficients kg, and kg cannot be considered as
truly independent parameters.

17.6. OVERALL MASS TRANSFER BALANCES

In Chapter 12, we showed that the formulation of convection problems can be based on the
heat balance over an infinitesimal volume element or over a section element, which is of
finite size except in one dimension (Fig. 17.13). The same reasoning applies to mass transfer
problems. To illustrate, let us consider the removal of sulphur dioxide from a process gas
by subjecting it to counter-current scrubbing with an alkaline solution in a packed column
(Fig. 17.14).

The initial concentration of SO, in the gas is ¢so,,0 and the concentration of SO, at
"equilibrium with the aqueous solution is ¢go, .. The mass transfer coefficient in the column
is k4, and the available surface area for mass transfer per unit volume of the column is a,;
the value of the latter depends on the type of gas/liquid contact system used in the column.

The material balance for sulphur dioxide over a section of the column of height dy can
be stated as follows:

decrease in SO5 in gas stream = rate of SO, transfer to liquid,

ie.,

d
—Acuo c;yoz = Ac kd &y (CSOz - cso,'c) ' (17.6.1.)

where A is the cross-sectional area of the column and ug the superficial velocity of process
gas through the column (i.e., gas flow rate/A.).

The above first-order differential equation is integrated for the boundary condition
¢ = €g0,,0, at ¥ = 0 to yield the equation

(CSO: — CSOZ,C) —kgayyfup
)

=e 17.6.2
(€50,,0 — €50z,¢) ( )

where y is the distance from the entry point of gas into the column.
Similarly to the case of heat transfer (Chapter 12), the overall rate of mass transfer of
S0O; in the column is expressed by

mso, = ke A(Ae)La, (17.6._3)

where A is the total surface area available for mass transfer = a, L A;; L is the column
height; (Ac)zn is called the logarithmic mean of the initial and final concentration “driving
forces™

(Ac)pp = (68020 6801,e)=(05041=C50s0)

In ( £3@a2—c502.=
€505~ €503,

(17.6.4)

where ¢so, 1 is the concentration of SO in the exit gas. _
Equations (17.6.3) and (17.6.4) are analogous to (12.8.9) and (12.8.10) which were
developed in Chapter 12 for the equivalent heat transfer problem.
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EIGHTEEN

Chemical Rate Phenomena

In Chapters 3-17, we discussed the theory and methodology of momentum, heat and mass
transfer. Most processes used for the production of materials also involve chemical or
physicochemical transformations, the rates of which may be controlling the overall pro-
cessing rate. In this chapter, we will introduce the basic concepts of chemical kinetics and
thermodynamics and formulate the rate equations for a reaction system which is controlled
both by mass transfer and chemical reaction.

We have seen that in describing mass transfer rates there are certain rules that apply
irrespective of the fluid or solid material involved. In the case of chemical kinetics, there
is much more diversity to the point that almost each chemical rate coefficient is unique to
a particular reaction system. However, there are certain common methods for dealing with
chemical rate phenomena, as will be shown in this and the following chapters. For additional
examples on the application of thermodynamics and kinetics in materials processing, the
reader is referred to the textbook by Evans and De Jonghe on The Production of Inorganic
Materials [11.

18.1. HOMOGENEOUS AND HETEROGENEQOUS REACTIONS

Chemical reactions are classified in two broad classes: Homogeneous reactions, which
involve only one phase (e.g., a gas or liquid solution), and heterogeneous reactions, which
occur between a fluid and a solid or between two fluids separated by an interface. Single-
phase reactions that require the presence of a catalytic surface (e.g., the formation of gaseous
NH3 from nitrogen and hydrogen gas), may be considered as quasi-heterogeneous reactions.

The rate of chemical reactions depends on the chemical nature and concentration of the
reactants, the temperature and pressure of the system and, in the case of catalytic reactions,
on the presence of catalysts. The rate of reaction of a component A is generally related to
its concentration by means of the following material balance:

mass of A reacted/time in reactor volume
= rate of reaction of A (forward reaction) (18.1.1)
— rate of generation of A (reverse reaction)

It can be seen that when the rate of the reverse reaction is greater than that of the

forward reaction, there will be accumulation rather than depletion of A molecules in the
reactor volume.

79
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18.1.1. Homogeneous Reactions

In homogeneous reactions, reaction occurs throughout the entire volume of the reacting
mass. For an irreversible reaction of species A with species B (i.e., when the rate of the
reverse reaction is negligible) in a closed vessel, the material balance of (18.1.1) is expressed
mathematically as follows: )

v, d—;;-‘l =V kg 3, | (18.1.2)
where V. is the reactor volume; ca is the concentration of reacting species; k. ¢ is the
chemical rate coefficient for the forward reaction.

The power exponent of concentration, n, is called the order of the reaction and usnally
has an integer value. When the rate depends only on the concentration of species A, the
reaction is of the first order. If the rate is proportional to the product of the concentrations
of reagents A and B, the reaction is of second-order.

Equation (18.1.2) shows that for homogeneous reactions the volume of the reactor, V.,
appears on both sides of the rate equation and therefore cancels out. Thus, the rate equation
for a first-order reversible reaction may be written as

a
_fa = kr fCap — krrCab, (18.1.3)

dt
where k. rand k; . are the rate coefficients for the forward and reverse reactions, respectively. -
In most reaction systems encountered in the processing of materials, the chemical
rate coefficients cannot be calculated on theoretical grounds and are usnally determined
experimentally. It is therefore convenient to group the forward and reverse rate constants
into a single rate coefficient, k., which represents the net rate of reaction of the species
A. The potential for the reverse reaction (i.e., generation of A) is then accounted for by’
the value of the eguilibrium concentration of the reacting component A as shown by the
following equation for a first-order reaction:

de
“df = ke(cap — Cae), (18.1.4)

where c4 3 represents the actual concentration of A in the bulk of the fluid, and ¢4 ¢ is its
equilibrium concentration, which will be described in §18.2.

Dimensional analysis of (18.1.4) shows that the dimensions of the chemical rate coef-
ficient for a homogeneous reaction, k,, ate t~1. The form of (18.1.4) indicates that when
the bulk concentration of the reacting species in the reactor, ¢, reaches the equilibrium
concentration, c4 ., the forward reaction (i.e., depletion of A) will be equal to the reverse
reaction (i.e., formation of A); therefore, the net rate of reaction of A will be zero. At
bulk concentrations of A in the reactor less than c4,., there will be formation rather than
depletion of species A.

18.1.2. Heterogeneous Reactions

Heterogeneous reactions involve two or more phases and occur at the interface between a
fluid and a solid (e.g., leaching of minerals) or between two immiscible fluids (e.g., gas
absorption in a liquid). The majority of chemical reactions encountered in the processing
of materials are first-order, heterogeneous reactions.
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As noted in §18.1.1, homogeneous reactions occur throughout the entire volume of
the reacting mass. Therefore, the dimensions of the rate coefficient, k., are (L3 t—1)/L3
= t~1. The rate of homogeneous reactions depends on the concentration, temperature and
pressure of the reacting and product species. In addition to these parameters, the rate of
heterogeneous reactions also depends on the surface or interface area available for reaction.

The rate equation for a first-order heterogeneous reaction in a closed vessel is expressed
as follows: '

dca

~V — = Ackn(ca = cae), (18.1.5)

where V.. is the volume of the reacting fluid and A, the surface or interface area available for
reaction. Inspection of (18.1.5) shows that the dimensions of the chemical rate coefficient
of a heterogeneous reaction are L t~!; i.e., they are the same as the dimensions of the mass
transfer coefficient which was discussed in Chapter 17.

As in the case of mass transfer across an interface (Chapter 17), in many cases it is
possible to calculate the surface area available for reaction, A,, in a reactor of volume
V;; for example, in a pneumatic transport reactor where the gas-solids stream contains #,
spherical particles of diameter d; per unit volume of stream, the surface area available for
reaction per unit volume of reactor space is:

Ar = npAp = np(wd?). (18.1.6)

In cases where it is difficult to calculate A, directly, it is convenient to use the specific
surface area per unit volume of the reactor which is defined by

@y = . (18.1.7)

The specific surface area has the dimensions of L™! and in some cases can be deter-
mined analytically. For example, in the case of gas injection in a liquid bath, an estimate
can be made of the average bubble diameter, d}, and then of the rising velocity, u,, on the
basis of a balance between buoyancy and drag forces (Chapter §) or some other criterion;
the average residence time of bubbles in the bath can then be calculated from

ty = —, (18.1.8)
up

where L is the distance between the point of injection and the surface of the bath. On the
basis of the residence time of the bubbles in the bath, we can then calculate the total volume
of gas in the bath (ga.s' hold-up), at any instant of time, from the volumetric flow rate of gas

injection, 2:
V, =91 (18.1.9)
The number of bubbles present in the bath, ng, is then obtained by dividing V, by the

volume of a single bubble; and the total surface area of bubbles in the bath by multiplying
115 by the surface area of a single bubble:

Vi V.

Finally, the specific surface area of the gas-liquid suspension in the melt, a,, is calcu- ‘
lated. by dividing A, by the volume of the gas-liquid dispersion, V. (see (18.1.7)).
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It should be noted that the ratio 6/d, in the last term of (18.1.10) represents the surface
to volume ratio of a spherical or quasi-spherical bubble or particle of diameter dy, or d,. Its
form explains the very high transport and reaction rates encountered with fine particles.

In some cases, it is not possible to estimate A, and V; separately. The alternative is to
express the available surface area in terms of the ratio a, (see (18.1.7)), as in the following
form of (18.1.5): ; '

—% = (%) kr(cap —cae) = aukr(cap — cae) (18.1.11)
For example, in a catalytic reaction, the surface area of platinum-coated ceramic shapes may
be expressed in terms of m? per m® of packed reactor volume.

Frequently, there are reaction systems where it is impossible to differentiate even be-
" tween a, and k.. For example, this may be the case in the analysis of rate data from a
rotary kiln or a leaching tank. In such cases, it is sometimes convenient to group a, and

the heterogeneous rate coefficient k. into a volumetric rate coefficient, k], as shown in the
following form of (18.1.11):

de
_d_: = (avkr)(cap — ca,e) = kplcap — cae)- (18.1.12)

It can be seen that through this device a heterogeneous reaction is treated as being
homogeneous and the corresponding chemical rate constant, k., has the dimensions t~1.
The overall rate of reaction between two phases depends both on the rate of the chem-
ical reaction and on the mass transfer rate of the reacting species between the bulk fluid
and the reaction surface. Although chemical reaction and mass transfer are very different
phenomena, they have a similar effect on the overall rate of the reaction. Also, as we will
see in §18.3, in many cases their respective rate coefficients can be added to provide an
overall rate coefficient for a particular reaction system. '
The heterogeneous systems encountered in the processing of minerals and materials
are:
e pgas—solid {(e.g., combustion of carbon, oxidation of sulfides, reduction of
oxides)
e liquid-solid (e.g., leaching of minerals, electrodeposition of metals, surface
coating, ion exchange)
¢ gas-liquid (e.g., oxidation of solutions, absorption)
¢ liquid-liquid (e.g., solvent extraction, slag-metal refining).

18.2. CHEMICAL THERMODYNAMICS

The quantitative description of chemical processes is based on chemical thermodynamics,
which establish the feasibility of a particular reaction under certain conditions, and chemical
kinetics, which determine the rate at which the reaction will proceed. In this section, we will
present some of the basic concepts of thermodynamics which are essential for formulating -
and solving chemical processing problems.

18.2.1. Sensible Heat and Heat of Formation

Chemical processes are normally carried out at constant pressure. Under isobaric conditions,
the total enthalpy, or total heat content, of a chemical species consists of
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a. the heat of formation which will be discussed below,

b. the sensible heat, literally heat that can be sensed because it is associated
with a temperature change and is expressed by

T
f C, dT,
0

where C;, is the molar heat capacity of the species in J mol—! K1, i.e., its
specific heat (Chapter 10} times its molecular weight (C, = C,M).

c. the heat of transformation associated with a parficular physical change of
the element, such as crystal transformation or change of phase (melting and
evaporation), which is expressed in J mol™! .

For convenience, the total enthalpies of all chemical species are tabulated with respect
to a reference temperature, Tg, and at a standard pressure, pg, which are usually taken
to be 25°C (298.15 K) and 1 bar (0.9869 atm) or, in some texts, 1 atm. Therefore, the
enthalpy, AH;, of a chemical species 7 can be expressed as follows:

T
AH; = AH? + / CodT + 3 (AHuans) (18.2.1)
T

where AH? is the total enthalpy of the species at 7y and the last term of (18.2.1) represents
the heat absorbed or released in transformations that have occurred between the reference
temperature, Tp, and temperature 7.

To illustrate these concepts, Fig. 18.1 [4] shows how the molar heat capacities of the
elements nickel and silicon change with temperature and also with crystal transformation (A
transition for nickel), melting and evaporation. The change in total enthalpy with tempera-
ture is shown in Fig. 18.2 [4] for silicon.

When chemical elements react to form a compound, a certain amount of heat is released
to the environment; in accordance with the first law of thermodynamics (the conservation
of energy), this heat of formation of a compound is equal to the total enthalpy of the
compound minus the total enthalpies of the reagent elements. The heat of formation is of
the same nature as the heats of transformation of (18.2.1): Heat is stored in atoms and
molecules in the form of kinetic or potential energy (energy of translation, rotation and
oscillation): _

For chemical compounds, the term AH? in (18.2.1) is equal to the heat of formation
of the compound at Tg:

AH? = AHj. : (18.2.2)

By definition, the heat of formation of the elements (e.g., Ha, O3, Fe, and C) at 298.15 K
and 1 bar (or 1 atm) is zero.

When elements and compounds react, they are rearranged to form new chemical species
and heat may either be released or absorbed. Again in accordance with the first law of
thermodynamics, the heat of formation of the reaction, or for short the heat of reaction,
AH.., is equal to the sum of the total enthalpies of the products minus the total enthalpies
of the reagents. For example, in the case of the reaction

bB +cC = dD +eE, (18.2.3)
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Figure 18.1. Heat capacitics of Ni and Si at 1 bar as functions of temperature (A-TPT =
lambda transition point, MPT = melting point, BPT = boiling point; [4]).

the heat of reaction is expressed as follows:

AH..=(dAHp +eAHg) — (bAHp + cAHg), (18.2.4)
where b, ¢, d, and e are the number of molecules or atoms of spccicé B, C, D, and E
involved in the reaction, and AHg, AHg, AHp, and AHE their respective totat enthalpies
at temperature 7.

It is evident from (18.2.1), (18.2.2), and (18.2.4), that the same result is obtained if one
sums up the total enthalpies of products (+) and reagents (—) at the reference temperature T

and then adds the sensible heat contents and any heats of transformation for all components
between Ty and T '

AH,, =(dAHS + eAHZ) — (bAHY + cAHZ)

n T
+ Z: (fcp dT + Z (AHtruns)) .
T

(18.2.5)

i=1

In exothermic reactions, heat is released and by convention the value of AH,, is

negative. On the other hand, reactions which absorb heat are called endothermic and have
a positive AH, . '
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Figure 18.2. Enthalpy of solid, liquid and gaseous silicon as a function of temperature at 1
bar [4].

18.2.2. Gibbs Free Energy and Enfropy

A very important concept in chemical thermodynarmics is the Gibbs free energy of a species
which is a function of its enthalpy and entropy:

G=H-TS. (18.2.6)

The property of entropy has the dimensions of energy/temperature (Q T~1) and derives
from the second law of thermodynamics which states that the total entropy change in a system
resulting from any real process in the system is positive and approaches a limiting value of
zero for any process that approaches reversibility. The entropy of a reversible process is

equal to the amount of heat absorbed during the process, divided by the temperature at
which this heat was absorbed: JH

ds = il
In the above definitions, the word reversible denotes a process which is carried out
under near-equilibrium conditions and, therefore, most efficiently; an example of this is the
melting of a solid at its melting point. Since the heat content of a species is measured in
small increments of one degree, the fotal entropy of a chemical species 7 at its equilibrium
state, temperature T and standard pressure py can be expressed as follows:

Ttrn.na

T .
CpdT AHisons
AS; = AS? + j =+, (——‘—) : (18.27)
Ta
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Figure 18.3. Entropy of solid, liquid and gaseous silicon as a fonction of temperature at 1 bar
[4].

where AS} refers to the entropy of the species. at its equilibrium state and at temperature T
(298.15 K) and standard state pressure pg (1 bar or 1 atm); and Ti;a0, are the temperatures -
of any transformation phenomena such as melting and evaporation that occur between Ty
and T'.

Equation (18.2.7) applies down to temperatures of absolute zero by setting AS? = 0 and
changing the lower limit of the integral from Ty to 0. Az O K, the entropy of all crystalline
elements and compounds is zero and for all other species it may be zero (ASsy = 0);
this statement constitutes the third law of thermodynamics. "The change of entropy with
temperature is illustrated in Fig. 18.3 [4] for silicon at the standard pressure.

From the general definition of the Gibbs free energy (see (18.2.6)) we can now express
the Gibbs free energy of a chemical species 7 at equilibrium in terms of its total enthalpy
(see (18.2.5)) and total entropy (18.2.7) at temperature 7" and standard pressure pq:

AG? = AH? — TAS?. (18.2.8)

The heat capacities, enthalpies, entropies, and Gibbs free energies of chemical species
at their equilibrium state and at the standard pressure of 1 bar (0.9869 atm), or 1 atm,
are published in thermodynamic tables as a function of temperature T' above the reference
temperature Tp (298.15 K) [2-4]. The term equilibrium state will be discussed in the
following section. ) _

The most inclusive and up to date compilation of thermochemical data is by Barin
[4] which is also available in computer files. A very useful, and “user-friendly,” tool for
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computing heats of formation and for many other thermodynamic calculations is the HSC
computer program developed by Outokumpu Research [5].

18.2.3. Actual and Equilibrium Gibbs Free Energy

To visualize better the following discussion, let us consider that all components of the
reaction of (18.2.3) are in gaseous form:

bB + ¢C = dD + eE, (18.2.3)

where b, ¢, d, and e are the number of molecules or atoms of species B, C, D, and E
involved in the reaction. _

The Gibbs free energy of this reaction is a function of the chemical species and number
of moles of the reagents and products and the temperature and pressure. of the system in
which the reaction takes place. However, it is evident that the effects of temperature and
pressure on the Gibbs free energy of the reaction are manifested through the energy levels of
the reagents and products. Therefore, the Gibbs free energy of a reaction can be expressed
solely as a function of the number of moles involved in the reaction and their respective
levels of Gibbs free energy.

On the basis of the law of conservation of energy, we can state that

Gibbs free energy of reagents
+ Gibbs free energy of reaction
= Gibbs free energy of products,

which leads to an equation similar to (18.2.4) for the heat of reaction:
AG,. = [(dAGp + eAGE) - (bAG3 +cAGG)]. (18.2.9)

Let us now divide the actual Gibbs free energy of a chemical species ¢ at temperature
T and actual partial pressure p; o into two components:

» an equilibrium (or srandard) component of the Gibbs free energy which
corresponds to the equilibrium pressure of the species at the standard state,
Die-

» a relative component of the Gibbs free energy which represents the effect
of the difference between the equ:hbnum pressure and the acrual pamal
pressure of the specices, i.e.,

AGi 1 = AGE — AG, (18.2.10)

where AG?, AG;, and AG; . denote the equilibrium, actual, and relative Gibbs free
energies of species 4.

Both the equilibrium and actual pressures refer to the thermodynamically effective
partial pressure of a gas species; in most thermodynamic texts the effective pressure is
called fugacity (from the greek ¢uyn! lit. capacity to flee). Fugacity has the same units
as pressure. For ideal gases, fugacity is equal to the partial pressure of the gas all gases
approach ideal-gas behavior as the pressure is reduced.

At pressures less than 5 atmospheres and temperatures over 700 K, gases and vapors
exhibit near ideal behavior [8]. However, at higher pressures and lower temperatures, there
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can be deviations from ideality due to attraction forces between the gas molecules and the
finite volume occupied by the molecules; under such conditions, the effective partial pressure
of a gas can be lower than its actual pressure. For example, at 473 K and 10 atm pressure,
the effective pressure of HzO vapor is 95% of the actual pressure; at 473 K and 1 atm, the
effective pressure is 99.9% of the actual [8].

Let us now define the activity of an ideal gas 7 as the dimensionless ratio of the partial
pressure of the species divided.by the standard state pressure:

a=B

18.2.11
Do ( )

Generally, the standard state pressure is selected to be

po = 1bar (or1atm),

and for pure condensed phases
a=1

In the case of non-ideal gas behavior we introduce the activity coefficient, vy, in

(18.2.11): .
o=y, (18.2.12)
Po

For gaseous species, the activity coefficient accounts for any deviation from ideal gas
behavior. Therefore, in the above example of water vapor at 473 K, the value of yu,0 is
0.999 at 1 atm and 0.95 at 10 atm. As noted above, -y can be assumed to be unity for gases
at moderate to low pressures and this applies to all examples in this chapter.

We now need a relationship between the actual and equilibrium Gibbs free energies (see
(18.2.10)), temperature and pressure. The reader will recall that an exponential “Arrhenius-
type” of equation has been found to represent well the relationship of the mobility of liquid
molecules, such as fluidity (1/viscosity, Chapter 3) and diffusivity (Chapter 14) to tempera-
ture:

Vpr _ _g./RT
— ¢~ Bu/RT. 3.2.
o (32.8)
Dapr — ¢~ Fa/RT (14.4.2)
DaBo

where the constants &, and E; are called the activation energies of the respective phenom-
ena. The same relationship exists between the chemical rate coefficient of reactions and
their temperature and activation energy (see (18.3.11), §18.3):

%fﬂ_" _ ¢~Fa/RT, (18.3.11)

The same exponential relationship also applies to the effect of tcmpe;a_l?urc on the va-
por pressures of liquids and to other natural phenomena and is derived from mathematical
statistics (extreme value distribution). It is therefore not surprising that the actual and equi- |
librium pressures of a gaseous species % are related to the standard pressure and temperature ™
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of the system, and to the corresponding Gibbs free energy levels, by a similar exponential
relationship:
Pie _ ,~AGi/RT anq Pio . -AGY/RT (18.2.13)
Do Po
By replacing the pressure ratios in the above relationships by the definition of activity
(18.2.11), we obtain
AG; = —RTIn &, ’ (18214)

and
AG? = ~RTIna;,. (18.2.15)

Therefore, the relative component of the Glbbs free energy (see (18.2.10)) can be expressed
as follows:
AGira = AG] — AG; = —RTIng;, + RT'Ina;. (18.2.16)

We now have an expression for the actual Gibbs free energy of a chemical ‘species as
a function of its equilibrium free energy at T" and p,, its activity at equilibrium (&; o, 7: ),
and its actual activity (a;, p;) at temperature T

Let us now apply the same reasoning to the chemical reaction of (18.2.3). As discussed
earlier (see (18.2.9)), the actual Gibbs free energy of this reaction is equal to the net sum
of the actual Gibbs free energies of the components of the reaction:

AG,z = (dAGp + eAGg) — (bAGg + cAGC). (18.2.17)

By replacing the total Gibbs free energy terms by the corresponding activity terms from
(18.2.14), we obtain

d e
AGrr = —-RTIn (“D“E ) : (18.2.18)
actual

The cormresponding equations for the equilibrium components of the Gibbs free energy
for the same reaction are:

AG?, = (dAGS + eAGS) ~ (bBAGS + cAGS)

ahal
On the basis of the (18.2.18) and (18.2.19) and (18.2.16), the relative Gibbs freg energy
of this reaction may now be expressed as follows:

AG?. = —RTn (“D“E) . (18.2.19)
equil

AGrz.rcl =AG:= - ﬁGra: =—RTIn (GDZE)
eple equil (18 2.20)

+ RTIn (“D“E ) :
a’Ba'C' actunl

where the first group of activities are at equilibrium and the second at actual conditions.

18.2.4. Equilibrium Censtant of a Reaction

When the relative Gibbs free energy of a reaction system is zero, there is no “driving force”
for the reaction to proceed either to the right or to the left; therefore, the reaction system
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is said to be at equilibrium. However, by definition, the equilibrium or standard Gibbs
free energy of a compound or reaction, AG?2,, at a specified temperature T" is constant;
therefore, the group of activities at equilibrium in (18.2.19) must also be constant:

d e
(D_) K. (18.2.21)
Gplc / equil

.} By substituting from (18.2.21) into (18.2.19) we obtain

AG®, = —~RTh K., . (18.2.22)

where K. is called the equilibrium constant for the reaction of (18.2.3), at temperature T'
and p, = 1 bar (or 1 atm).

The group of actual activities in (18.2.25) is a nonequilibrium function, K,_., whlch
is of the same form as K,:

d qe -
(“faf’ ) = Kne (18.2.23)
Gple actual
By introducing the terms K, and K, _. in (18.2.20) we obtain

AGrara = —RTI0 K, + RTIn Kn_.. (18.2.24)

Equation (18.2.24) shows that for any reaction, when Kp—, = Kz, AGrz e = 0, and the

system is at equilibrium; when K, < K., AG;zra < 0, the spontaneous reaction is to
the rlght of the chemical equation; when K., > K., AGrz e > 0, the reaction is to the
left. Therefore, the criterion for equilibrium depends both on the value of the equilibrivm

constant and the value of the actual ratio of activities in the system. It must also be kept in~ ---

mind that K, _., unlike X, is not a constant and can be controlled during the design and
operation of a process.

Example 18.2.1 ”

At the reaction tqﬁm_peraturc of about 1600 K, magnesium vapor is produced by the followmg ‘

reaction of dolomite-ferrosilicon briquettes [9]:
2(Ca0 - MgO) (s) + Fe_Si(s) = 2Mg(g) + 2Ca0 - Si0y(s) + zFe (s),

where (s) denotes solid components, and (g) gaseous components.

The HSC program [5] computes the AG?_ of this reaction at 1600 K to be +37.1 kcal
mol~! and the equilibrium constant 8.58 x 10~%. As will be shown in the next section,
the activity of solids is equal to 1; therefore, amg = (8.58 x 1076)1/2 = 2.93 x 102 and
PMg = 2.93 X 10~ atm. Therefore, it is not practical to produce Mg by this reaction at
atmospheric pressure. However, by carrying out the reaction under reduced pressure, the
partial pressure of magnesium vapor over the reaction surface can be reduced to 1 x 1073
atm, i.e., lower than the equilibrium pressure (K,_. < K.); therefore, the reaction becomes
feasible.

18.2.5. Calculation of Equilibrium Concentrations
As discussed in §18.2.3-18.2.4, the standard free energy of formation of a reaction, AG’"

T

is obtained by adding up the standard Gibbs free energies of the products and subtracting the

-

— e+ i o e -
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standard Gibbs free energies of the reagents (e. g2, see (18.2.19)). The equilibriurn constant is
then calculated from (18.2.22) and used to determine the ratio of the activities at equilibrium
(see (18.2.21)).

For gases, the standard state pressure (p,) is usually taken to be 1 bar = 0.9869 atm
(e.g., Barin [4] and HSC program [5]) or 1 atm (e.g., see [2]). In either case, the activity
of a non-ideal gas is-exp?essed by '

9 - (18.2.12)

Po
and for ideal gases
g; = 24, (18.2.11)
Po
The activity of pure condensed states is
a; = 1. (18.2.25)

For liquid solutions, the activity of component A is equal to its mole fraction (Chapter
14) in the solution multiplied by its activity coefficient in the solution:

a; = "}‘,'X.;. - (18226)

The value of the activity coefficient, +y;, depends on the nature of species 7 and its
interaction with the other species in the solution. At very high concentrations of the solvent,
the activity coefficient is close to unity and the activity of a solute may be assumed to be
equal to its molar fraction in the solution (Raoult’s law). The value of  for solutions can
be estimated from thermodynamic rules or from semi-empirical correlations, as illustrated
in the following example.

Example 18.2.2

Zinc vapor is recovered from a non-ferrous smelting slag (molten silicate solution} in an
electric arc furnace at 1200°C. The chemical reaction between the slag surface and the
CO—CO; atmosphere above it is expressed as follows:

- ZnO (1) + CO(g) = Zn (g) + COz (g), (18.2.27)

where the letter “1” signifies that ZnO is dissolved in the liquid slag and the letter “g” the
gaseous components of the reaction. The slag contains 15% Zn by weight (X, = 0.15)
which in this case corresponds to a molar fraction of Xz,0 = 0.07. It is required to estimate
the equilibrium concentration of zinc vapor as a function of the CO/CO;, ratio in the furnace
atmosphere.

The standard Gibbs free energy of this reaction is calculated from the free energies of
the components {(as in (18.2,19)):

AGGu0 20 = AGZp () + AGEo, — AGE o — AGTs. (18.2.28)

On the basis of this equation, the HSC program [5] computes the standard free energy of
the reaction at 1473 K to be 13200 ¥/mole ZnO. The corresponding equilibrium constant
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(see (18.2.22)) is 0.3399. At equilibrium, the activity of zinc is a function of the CO/CO;
ratio, the activity of ZnO in the slag and the system temperature (see (18.2.21)):

2co

azn,c = 0.3399az.0 (18.2.29)

2C0,

If we were concerned with the réduction of solid ZnO particles {e.g., zinc calcines), the
activity of ZnO would be assumed to be unity. Therefore, from (18.2.29), the equilibrium
activity of zinc vapor would be

e - ""‘ . X
azs = P22° _ 0.3399.790 _ 03309790 _ .3300 252
, 1atm . 8Co, pcoa  Xco,

However, the activity of ZnO in molten slag depends on its molar fraction in the melt
(Xzno) and the activity coefficient of ZnO, “Yzn0. By comelating a number of experimental
results, Battle and Hager [6] developed a correlation of yz,0 as a linear function of the
concentrations of CaO, MgO, Al,O3, FeO, and Fe,0O; in the slag; let us assume that on the
basis of this correlation, yzno is estimated to have the typical value of 2 [6]. Therefore,

@Zn0 = YznoXzno = 2 X 0.07 = 0.14, (18.2.30)

and the equilibrium pressure of zinc vapor is calculated to be

PZne _ (3399 x 0.14 x 2C0. — 0.0476.00.
1atm Xco, Xco,

(18.2.31)

For instance, if the CO/CO; ratio in the electric arc furnace is controlled (by means of .

the coal and air input rates) at 1, the partial pressure of Zn vapor in the gas cannot exceed
0.0476 atm; at higher Zn pressures, and therefore concentrations of Zn in the gas atmosphere
above the slag, the reduction reaction would be reversed and some of the zinc vapor would
be oxidized by CO; to ZnQO.

Example 18.2.3

Estimate the rate of loss of MgO from a surface heated at 2000 X in vacuum. The decom-
position reaction is expressed as follows:

MgO (s) = Mg(g) + 0.502 (g). (18.2.32)

The standard Gibbs free energy of this reaction is computed [5] to be 76.53 kcal mol—!
and the corresponding K. = 4.08 x 1072 (po = 1 atm). Therefore (see (18.2.21)),

am al'{2 :
K. = (—:‘—OL) , (18.2.33)
&MegO

and for amgo = 1,
K. = 4.08 x 10~° = aypgad, = pmgher, - (18.2.34)
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This is a sublimation reaction and the molar fluxes of the two elements leaving the
reaction surface are in the ratio of 2 to 1:

= 2. (18.2.35)

Also, the mass fiux of magnesium leaving the surface is controlled by sublimation and can
be expressed by the Knudsen equation [9]:

(18.2.36)

T )

Ny = 44.4ppg (

_where Py is in atm and the mass flux in g s~1 cm™2. The same equation applies to the

sublimation of oxygen molecules; by converting the mass fluxes in the two sublimation -
equations to molar (division by My, and Mq,) and combining with (18.2.35), we obtam a
second equation between ppmg and oy’

1/2
MMS) . (18.2.37)

=2
We now have two equations ((18.2.34) and (18.2.37)) for the two unknown- pressures of
sublimation. By solving them, we find that pos = 1.76 x 10~% atm. and pymg = 3.07 x 1078
atm. Finally, the mass flux from the MgO surface is calculated from (18.2.36) to be Nhg
=15x10"% gs~! cm2.

Example 18.2.4

Examine whether it is feasible to produce aluminum by means of the hydrogen reduction of
AlO; at 2000 X:

Al;04 (s) + 3Ha (g) = 3H20 (g)+ 2A1(1). (18.2.38)

The equilibrium constant of this reaction at 2000 K is computed [5] to be 4.473x10~17,
Therefore, K. = (pr,0/pr, ) = (Xu,0/Xn,)*?, and Xu,0/Xu, = 3.55 x 10~%. This
means that it will be necessary to recirculate a very large amount of hydrogen in order to
remove a relatively minute amount of oxygen as HzO.

18.2.6. Ellingham Diagrams

In Example 18.2.4 above, we examined the thermodynamic “ability” of hydrogen to remove
oxygen from a metal oxide and produce metal, at a given temperature. This type of reaction is
encountered with many metal oxides. 1t is therefore convenient to construct a thermodynamic
diagram where the standard Gibbs free energy of each oxide is expressed per mole of oxygen
and plotted against temperature. By plotting the free energies for all known oxides, including
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Figure 18.4. Ellingham diagram for oxides [1].

those of the reducing agents Hp, C, and CO on this plot, one can see the thermodynamic
relative reducibility of any particular oxide.

This type of plot is very useful in the analysis of chemical reactions and is called the
Ellingham diagram. Figure 18.4 [1] is such a diagram for oxides. For example, it tells us
that an element which is lower down on the plot can reduce an oxide higher up.
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In addition to the Gibbs free energies, Fig. 18.4 contains other useful information, by
means of three nomographs. The outermost nomograph represents the partial pressure of
oxygen at equilibium with a metal oxide at a particular temperature. For example, the
thermal decomposition of silver oxide can be presented as follows:

2Ag,0 (s) = 4Ag(s) + Oa(g). (18.2.39)

On the basis of the theory we presented earlier, the activities of silver oxide and silver are
equal to 1. Therefore, from (18.2.22), the equilibrium pressure of O at temperature T' can
be expressed as a function of the standard Gibbs free energy of the above reaction:

p;}:,c = Ke = e—AG.‘Z,fﬁT‘ (18240)
D

where p, is the standard state pressure. The equilibrium pressure of oxygen in a particular
oxygen-containing system is also called the oxygen potential of the system. Let us now
consider the dashed line joining the origin of the y-axis with the oxygen potential of 103
on the In pp, nomograph of Fig. 18.4 [1]. Consideration of (18.2.40) shows that this line
represents the function RT' Inpo, at po; = 1073, ie., the standard Gibbs free energy for
decomposition. Therefore, the point where such a line intersects the standard Gibbs free
energy plot for a particular oxide signifies the temperature at which the oxide will start
decomposing spontaneously to metal and oxygen; for example, at po, = 1073, Agz0 will
start decomposing at about 70°C (Fig. 18.4).

Of course, the use of vacuum for reducing metal oxides is not a practical means in
most cases. Reduction of metal oxides is usually carried out by means of a displacement
reaction where oxygen atoms of one oxide react with another element to form a new oxide.
The displacing element can be either another metal, or more often hydrogen to form HsO,
carbon to form CO, and CO to form COs,.

Let us now extrapolate the free energy lines for reactions

2H2 + 02 = 2H20 (18241)

and
2CO 4+ 0Oy = 2C0, (18.2.42)

in Fig. 18.4 to the ?afis (points H and C, respectively). The pu,/pn,0 and pco/pco,
nomograph scales of Fig. 18.4 represent logarithmic ranges of values of these ratios and
correspond to the values of the O, nomograph, according to the standard Gibbs free energies
of the respective reactions of (18.2.41)-(18.2.42); therefore, they are on the same basis as all
other plots in Fig. 18.4. For example, let us draw a line between the value of py, /pr,0 = 1
on the H-nomograph and the point H on the y-axis. All oxides (e.g., Cu, Ni, Pb, etc.) that
have plots above this line can be reduced at this Ha/HyO ratio. To reduce oxides with plots
" below the line, we need to use more hydrogen, i.e., to decrease the oxygen potential in the
reaction system.

Similar diagrams to Fig. 18.4 have been constructed for many other reaction systems,
such as sulfides, sulfates, carbonates, halides, carbides and silicates [1,9].
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Example 18.2.5

Calculate the degree of decomposition of pure nitrogen tetroxide according to reaction

N204(g) = 2NO2(9g) (18.2.43)

over the temperature range of 200400 K and at pressures of 0.1, 1, and 10 atmospheres
[15].

We first obtain from thermodynamic tables [4] the values of the equilibrium constant
for this reaction in the range of 200400 K. Then, on the basis of the stoichiometry of the
reaction, for one mole of reagent we obtain the following tabulation:

Initial Number . Mole
number of moles fraction
of moles at equilibium at equilibrium
NO, 0 2f 2/ +f)
Total 1 1+f 1

The fraction of N2O4 reacted, f, is related to the equilibrium constant, K, by (18.2.21)
as follows:

K — 380, _ (Xno,p/po)® _ _[2f/(L+ lp/pol® _ _4f°
 emo., Xw,0.P/p0  (-FY/QA+ /e 153

Therefore, f is related to KX, by the following expression:

Kc 172
f= (ﬁ) : (18.2.45)

p/po. (18.2.44)

Figure 18.5 [15] shows the results of the above calculation in graphical form. It can
be seen that the degree of N,O4 decomposition is decreased with increasing pressure; this

is due to the fact that two moles of product are formed for each mole of reactant (see
(18.2.43)).

18.3. MASS TRANSFER AND CHEMICAL REACTION -

As a first example of heterogeneous reactions, we will consider the reaction between a solid
particle and the gas atmosphere around it. For example, this type of reaction is commonly
encountered in metal reduction processes, such as the direct reduction of partly reduced iron
oxide (FeO) by hydrogen at 900°C:

FeO(s) +Ha(g)=Fe(s)+ H0(g). - - (18.3.1)
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f » XNOZ

Figure 18.5. Effect of pressure on degree of decomposition of NoO4 and molar fraction of
NO, at equilibrium.

Boundary layer
Xab b e / Reacted shell

Unreacted core

Concentration

Figure 18.6. Concentration profile of reacting species A through boundary layer and seclioned,
semi-reacted sphere.

This reaction proceeds through the following “steps” (Fig. 18.6):
a. diffusion of H; through the gaseous boundary layer around the particle;
b. diffusion of Hs through the reduced porous shell;
c. reduction of FeO to Fe at the interface between the oxidized sheli and the
unreacted core; - “
d. diffusion of the product HpO through the reduced shell;
e. diffusion of the product H,O through the gaseous boundary layer.

It can be seen that “steps” a and e are in fact one process, the counter-diffusion of Ha
and HyO through the boundary layer. Also, steps b and d are the counter-diffusion of Ha
and HpO through the reacted shell. Therefore, the five “steps” listed above can be regrouped
irito the following three basic processes:

a. mass transfer through the gaseous boundary layer;
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Figure 18.7. Photograph of partly reduced copper oxide sphere showing outer shell of metallic
copper.

b. diffusion through the reacted shell;
¢. chemical reaction at the interface.

It is evident that a molecule or atom of the reacting species, in this case hydrogen, must
pass through alf three processes. Therefore, the overall rate of reaction, i.e., the number of
molecules reacted per unit time, must be equal to the rate of each of these processes. The
situation is similar to the problem of heat transfer by conduction through a composite medium
(Chapter 10} or diffusion through the interface between two immiscible fluids (Chapter 17).

In this particular example, one molecule of hydrogen diffuses inward for each molecule
of H»O diffusing in the opposite direction. Therefore, this is a case of equimolar diffusion
and, as discussed in §14.5, the ner bulk flow due to diffusion is zero; the rate of molar flux,
Ny, , and molar flow, rhy,, of Ha through the boundary layer can be expressed as follows:

Nu, = —Nu,0 = kae (Xu,p — Xﬂms) , (18.3.2)
and therefore,
i, = 4rrg Ny, = 4nrikac (Xu, 0 — Xta,s) s (18.3.3)

where the subscript b denotes the concentration of Hp in the bulk gas around the particle
and the subscript s the concentration of Hp at the surface of the particle.

From diffusion theory (Chapter 14), the molar flow of the reagent Hy through the
reacted shell is related to time and distance as follows:

0Xu, )

) (18.3.4)

i

my, = 411'1‘2De5 c ( o
where 4772 is the diffusion area; D, is the effective diffusivity of hydrogen through reacted
shell around unreacted core; 7 is the distance from the particle center; £ is the reaction time. -
As discussed in Chapter 14, the effective diffusivity of a gas through a porous medium
is lower than the molecular diffusivity, because only the pores of the reacted shell (Fig.
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18.7) are available for diffusion; also, the diffusing species may have to follow a tortuous
path through these pores. The effective diffusivity can be related to the molecular diffusivity
of the species in free space by means of the following expression (Chapter 14):

£

Deg = Dap - (14.7.15) -

where ¢ is the porosity of the reacted solid and 7 is the “tortuosity” factor representing the
increase in length of the diffusion path through the interconnected pores.

The porosity may range from O to éver 0.5 and the tortuosity from 1 to over 10. For
example, in the case of iron oxides reduced at 750°C, the porosity was found to be about
50% and the pore sizes ranged from 0.2-0.5 microns [6]; the experimentally determined
values of porosity, tortuosity and diffusivity for hydrogen diffusing through reduced iron are
shown in the following tabulation by Olson and McKewan [11]:

Temp. °C Dy, Porosity  Tortuosity Dt n,
800 8.28 - 0.54 3.07 146
900 9.59 0.54 236 220
1000 133 0.44 225 2.63

The decrease of tortuosity at higher temperatures was explained by the formation of
larger pores by recrystallization due to sintering. The decrease of porosity at 1000°C may
be due to shrinking of the outer diameter of the particle, caused by the increased mobility
of the reduced iron atoms at higher temperatures.

As the reaction interface moves towards the center of the particle, the effective cross-
sectional area for diffusion through the reacted shell is constantly changing. However, since
the diffuston velocity (Chapter 14) of gas through the reacted shell is much faster than
the rate of advance of the reaction interface, we can assume that the interface radius, 7,
is constant with time over short periods of time (quasi-steady state conditions). Thus, the
partiat differential of the molar fraction in (18.3.&) may be assumed to be a total differential
with respect to 7 and integrated for the boundary condition of Xy, = Xu, , at r = o and
Xn, = Xy, at 7 =y, to yield '

P drrpr;
T lro— )

where 7 is the radius of the particle and r; the radius of the interface between reacted and
unreacted zones.

When hydrogen molecules reach the reaction interface, at 7 = r;, they react with FeO
to produce metallic iron. As discussed in §18.1, the rate of the chemical reaction can be
expressed as follows:

Deg ¢ (Xt1,.0 — Xty ), (18.3.5)

Th'H:l = k‘l‘(4ﬂr-|?) C(Xﬂg,i - XHg,e)- (1836)

1334
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where k. is the chemical rate coefficient and Xy, . the equilibrium concentration of hydro-
- gen at the reaction interface.

The equilibrium concentration of Hy at the reaction interface is calculated from the
standard free energy of formation of the reaction, as discussed in §18.2:

AGSope = (A + AGY, o) — (AGRo + AGE,). (18.3.7)
In this case, the activities of the FeO and Fe solids can be assumed to be uﬂity; therefore, the

equilibrium concentration of hydrogen at the interface is related to the HoO concentration
at the interface and to the equilibrium constant, K., as follows:

XH,0,
K, = =2+, 18.3.8
€ XH:,G ( )
or X
Xege = —?—0 (18.3.9)
and by substituting for Xy, . in (18.3.6):
o 2 XH,0,4
my, = ke(dnri) e | Xn,,i — % . (18.3.10)

The effect of temperature on the chemical rate coefficient is usvally expressed by means
of an Arrhenius-type equation;

ko = ky oo B/ BT (18.3.11)

where k., is the rate constant at some reference temperature 7, and E, is the “activation
energy,” or, in more practical terms the temperature coefficient of the reaction. For example,
in the case of FeCl; reduction by hydrogen, the activation energy in the temperature range
of 500-630°C was estimated, from the rate of advance of the reaction interface (Fig. 18.8
[71), to be 27500 cal/mol~!. -

Returning to (18.3.10), it is noted that the concentration of the product gas at the
interface, Xn,0,i, depends on the rate of diffusion of HoO away from the interface, first
through the reacted layer and then through the boundary layer. These phenomena are also
represented by (18.3.5) and (18.3.3), respectively, with the exception that the hydrogen
concentrations are replaced by the appropriate HoQ concentrations: '

] dnryri
MMH,0 = (

7 Derr ¢ (Xn,0,i ~ XH,0,s), (18.3.12)
Ty — Ti)

and _ _
Tp,0 = 4nrgka ¢ (XH,0,s — X1,0,8) - (18.3:13)

Let us now compare the five rate equations which represent the overall movement of
hydrogen in and out of the reacting particle, either in the form of Hy or Hz0: (18.3.3),
(18.3.5), (18.3.10), (18.3.12) and (18.3.13). We sece that all five rate steps are functions of
a concentration difference which may be considered as the driving force for each step.
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Figure 18.8. Arrhenius-type plot of chemical rale coefficient for reduction of FeClz spheres
by hydrogen. :

In an actual experimental or industrial reaction system, the “intermediate™ concentra-
tions of hydrogen at the particle surface, Xy, ,, and at the reaction interface, Xy, ;, are
not known, However, the bulk concentrations of Ha and H2O can be estimated easily. It
is therefore convenient to express the overall rate of the reaction in terms of the differ-
ence between these two concentrations. The reader will recall that a similar approach was
used in expressing the heat flux across a composite medium involving both conduction and
convection (Chapter 10), and the mass flux between two fluid phases (Chapter 17).

Accordingly, by algebraic manipulation of (18.3.2), (18.3.5), (18.3.10), (18.3.12) and
(18.3.13), we can eliminate the intermediate concentrations at the reaction interface and at
the surface of the particle and obtain the following expression for 7iny, solely as a function
of the bulk concentrations of Hy and HaO:

XH,0,b

e ) (1 &) + e (&) + e
(18.3.14)
Inspection of (18.3.14) shows that the last bracket represents the overail rate coefficient,
ko, for the reaction and is equal to the inverse of the sum of the individual “resistances”
to the five rate states; therefore:

'r'nH, = 4?1'1"3 c (-THz,b -

o () (r(.-?r:)glﬁ 1+ r:% )+ (n/rt)lz oo U839)
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For a system of planar geometry, i.e., when the reaction interface does not change with
degree of reaction, the above equation simplifies to

1 1 1 AY 1 1
—=—11 —, 3.
ke, o ( + K. )+ Don (1+ K. )+ k. (18.3.16)

where AY is the thickness of the reacted layer. If, in addition, the reaction is favored
thermodynamically (i.e., for high values of X) (18.3.16) simplifies further to:

1 1, AY 1 '
e e D T h (18.3.17)

It can be seen that (18.3.15)(18.3.17) for the overall rate coefficient are analogous
to the equations for the overall heat transfer (Chapter 12) and mass transfer (Chapter 17)
coefficients.

In Chapter 19, we will discuss some applications of the above rate equations. For
additional information on gas-solid reactions, the reader is referred to Szekely et al. [12],
Kunii and Levenspiel [13], and Smoot and Smith [14].
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Applications of Rate Phenomena Theory

In this chapter, we will discuss problems which involve simultaneous transport and chemical
phenomena. '

19.1. COMBUSTION OF CARBON PARTICLES

One of the most important reactions for producing energy is the combustion of coal parti-
cles with oxygen. The major constituent of coal is carbon and the combustion reaction is
expressed by:

C_(s) + 03 (g} = COz (g} (19.1.1)

On the basis of experimental work (Fig. 19.1, [1]), the following equation has been
proposed for the chemical rate of combustion of anthracite particles (73% C) in oxygen-
containing atmospheres:

NL =20.4e719000/RT ¢ (¥ o — X046} = krc€(X0a0 =~ X0ae)s (19.1.2)

where N is the mass flux of combusted carbon, in g carbon s~ em~2, Xp, , and Xo, .
are the mole fractions of the reagent at the reaction surface and at equilibrium, 7" is the
reaction temperature and the activation energy is expressed in cal mol~! (R = 1.987 cal
mol~! K1),

It is required to estimate the relative magnitudes of the rate coefficients for mass transfer
through the boundary layer and for chemicat reaction during the combustion of anthracite
particles of assumed spherical shape; also, the time required for complete combustion in air
of a 0.1-cm diameter particle at 1300 K.

It is noted from (19.1.2) that the chemical rate coefficient &k, c is expressed in terms
of grams of carbon reacted and, therefore, must be converted to the units of the gaseous
rate coefficients that were discussed in §18.3 (Chapter 18). It can be assumed that the ash
content in the anthracite does not form a “reacted shell” around the unreacted core of the
particle; therefore, the resistance to diffusion through the reacted layer (§18.3) is negligible.

Since we have no information on the relative velocity between particle and air, we will
assume the “worst case” of mass transfer of Oy through the boundary layer, ie., Re = 0;
therefore, from the Ranz-Marshall correlation (see (17.4.2)), Sh=2 and the comesponding
mass transfer coefficient of Op through the COy boundary layer around the particle is

Do._co 16 3.2 -
=Sh—2—~—2 =2x —=— 1 1.
ka Z X PR cms™ T, (19.1.3)

3603
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Figure 19.1. Combustion rale data for anthracites and semi-anthracites [11].

where d, (= 2r;) is the particle diameter in cm and the diffusivity of oxygen in CO, (Fig.
14.3) is 1.6 cm? s~1. Therefore, at the beginning of the reaction when the particle diameter
is 0.1 cm, kg = 32 cm s™1.
The equations for molar flux of O, through the boundary layer and reacting at the
surface of the anthracite particle are of the same form as (18.3.2) and (18.3.10) (Chapter
18):

o, = ApNo, = (41”‘12,)1040 (X026 — X0a,8) » (19,1,4)‘
moz = APNOn = (4177.12));51' c (XOz,a - XOg.e) . (1915)

The thermodynamic tables [5] show that the equilibrium constant for combustion of
carbon by oxygen at 1300 K is 8.3 x 105, Therefore, the equilibrium concentration of O,
at the interface (see (19.1.5)) is negligible. By combining (19.1.4) and (19.1.5), we can
express the “intermediate” concentration of Oz at the reaction surface as follows:

X036 = Py Xoa b (19.1.6)

The overall rate coefficient of the combustion reaction is defined by an equation of the
same form as (18.3.12) (Chapter 18):

tho, = (47712)koy ¢ X040, (19.1.7)
where, in this case . ;
_ 1 ,
k—“ = E + k_r (19.1.8)
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Let us now convert the chemical rate coefficient of (19.1.2) to the same units as kg and
kr. To do so we make use of the unit equation (Chapter 2):

2C modC molO, cm®0(TP) cm
x X X =

scat? _gT et C moi O s
11 224001300 _
1271 273 -
From (19.1.2), we calculate the value of k. ¢ at 1300 K to be 0.013 g carbon 5!

cm™2; the equivalent value of the gas-phase chemical rate coefficient k.. is calculated from
the unit equation (see (19.1.9)) to be

s (19.1.9)

k. = 116 cm/s

The difference between the values of k. ¢ and &, reflects the large difference between the
molar density of carbon in the anthracite and the molar density of the gas phase. It should
be noted that k. c can also be expressed in the “velocity” units of cm s~ ie., rate of
advance of the reaction interface towards the center, by dividing it by the density of carbon
in the anthracite, i.e., k. c/pc (pc = 1.7 g cm™3).

It can be seen that the chemical rate coefficient k. is not a function of particle diameter,
while k4 is inversely proportional to the diameter. During most of the reaction, the rate of
combustion depends mostly on mass transfer but towards completion (e.g., at d, < 0.01 c¢m,
k4 > 320 cm/s), control will revert to the chemical reaction unless the temperature increases
further.

From (19.1.8), we may now calculate the value of the overall rate coefficient:

1 dy 1
— =P 19.1.1
Fow 3.2 116 (19-1.10)

To estimate the time for complete combustion, we set up the material balance of oxygen
transferred = carbon consumed:

the dt = (4rr2) koy ¢ Xo, p dt = (dur2) dr ;TC’ | (19.1.11)
c
“where rc is the molar rate of oxidized carbon and is equal to the molar flux of reacting
oxygen (see (19.1.1)); pc is the apparent density of carbon in the anthracite particles, and
Mg is the molecular weight of carbon.

For chemical control (i.e., at relatively high kg and ks, = k), the last two terms of
(19.1.11) are integrated readily to yield the time for complete combustion of a particle of
initial size 75 o:

3 — Tp,D(pC/MC)
comb,r kr CXOg,b 1

and by substituting numerical values (Xg, in air = 0.21):

(19.1.12)

0.05 x {1.7/12)

116 X 5455 X 455 x 0.21

=31 s.

tcomb.r =
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For diffusion control, ks, % kg4, which is inversely proportional to 7, as explained
earlier. If we substitute for kz from (19.1.3) in (19.1.11) and integrate for the time of
complete combustion, we find that it is now proportional to the sguare of the particle radius:

r2 o(pc /Mc)
2D0,-co, ¢ X0ab

tcomb,d = (19.1.13)

and by substituting numerical values:

0.05% x (1.7/12)

2% 1.6 X gopee x 23 % 0.21

tcomb,d = = 56 s.

Of course, a differential equation can be set up which includes both coefficients and
integrated for rp0 > 7, > 0 to yield a more accurate estimate of the overall time for
combustion.

It is interesting to note that a correlation of a very large number of experimental data on
the time for complete combustion of various types of coal particles in air shows a dependence
on the square of the particle diameter (Fig. 19.2, [2]). This indicates that the reaction is
usually controlled by mass transfer (see (19.1.13)).

19.2. CALCINATION OF LIMESTONE

The production of lime by calcination of limestone is by far the largest application of a high
temperature reaction; it is carried out in rotary kilns (Fig. 19.3) and other types of furnaces
to process annually nearly three billion tons of limestone and meet the world’s needs for
cement. The calcination reaction is as follows:

CaCOj3 (s) = CaO (s) + COx (g), (19.2.1)

where (g) indicates that CO2 is in gaseous form and (s} solid state.
The equilibrium Gibbs free energy of formation of this reaction, at p, = 1 bar, can be
expressed as a function of temperature by means of the following equation [3]:

AGS_ = 182837 + 13.402TIn T — 251.059T Jmol L. (19.2.2)

From this equation and (18.2.22), which relates the equilibrium constant of a reaction
to its free energy of formation, we obtain the following correlation between the equilibrium
constant and the temperature of the reaction:

nK, = —21—;90- —1.6119In 7T + 30.196. (19.2.3)

In this case, the activities of the solid phases CaQ and CaCOj3 may be assumed to be

unity and the activity of the gaseous phase is equal to the decomposition pressure of CaCQO;
divided by the standard state pressure (Chapter 18):

PCo,

&CO4 =z ?
o

(19.2.4)
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Figure 19.2. Time for complete combustion of carbon particles vs. particle size. {12].

Therefore, the partial pressure of CO; at equilibriumn with CaCQOjg is numerically equal to
the equilibrium constant of (19.2.3):

PCOg,e ~ Kc o3 . (1925)

where pgo, . is expressed in bars (1 bar = 105 dynes/cm? = 0.987 atm).
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Figure 19.3. Schematic diagramn of rotary kiln for calcining limestone to CaQ.

0.5

1169 K P= 1 bar

0.5

Log(P, bar)

8 8.5 ) 9.5 10 10.5 1"

10000/T, X1

Figure 19.4. Decomposition pressure of calcium carbonate as a function of temperature.

Figure 19.4 [3] shows the effect of temperature on the decomposition pressure of
CaCQ3 to CO,. It can be seen that at about 1170 K, this pressure becomes greater than one
atmosphere. On the basis of this information, we can bring about the decomposition of the
calcium carbonate in two ways:

a. We can select a reactor temperature above 1170 K for calcining limestone.
Decomposition will proceed much as in the case of boiling water in a pot
which is heated to above 100°C.

b. An alternative means of attaining decomposition, at temperatures lower than
1170 K, is to decrease the bulk concentration of COs in the reactor by
providing a flow of air, or any other gas with the-exception of carbon dioxide,
over the decomposing limestone. As long as the actual partial pressure of
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CO; in the exit gas stream from the reactor is less than the equilibrivm
pressure of decomposition of CaCQj at the reaction temperature, limestone
will decompose to CaO; this case is similar to the evaporation of water
from a pond to the atmosphere above it. The same effect can be obtained
by reducing the atmospheric pressure in the reactor by means of a vacuum
pump.

As a limestone particle starts to decompose, the reaction proceeds inward leaving behind
a layer of porous CaQ. The reaction interface is the boundary between CaO and CaCO;.
This type of reaction is called topochemical or shrinking core reaction and is similar to the
reduction of metal oxides which was discussed in Chapter 18 (Figs. 18.6 and 18.7).

The decomposed CaCOjz shell has a relatively high porosity and a low effective thermal
conductivity (in range 0.001-0.0015 cal s~1 em~* °C~1) and acts as a thermat barrier, Also,
the decomposition reaction is endothermic and, therefore, heat must be transferred from the
environment to the reaction interface through this barrier.

Turkdogan et al. [4] studied the calcination of limestone spheres (0 18-4.15 cm diame-
ter) in a furnace under controlled conditions. Thermocouples were embedded at the surface
and in the body of the spheres and the temperature profile was measured during the decom-
position reaction. Figure 19.5 shows the temperature record for one of their experiments.
In this case, a limestone sphere (4.15-cm in diameter) was pre-heated to 800°C in a COs -
atmosphere. and then lowered into a hotter zone of the furnace which was maintained at
1332°C and-atmospheric pressure.

During an initial period, the pellet surface reached the furnace temperature wh11e the
unreacted core increased to only 905°C. After this period, the surface and core temperatures
remained essentially constant until calcination was complete; then the center temperature |
increased to the level of the furnace temperature (Fig. 19.5).

Experiments with spheres of various sizes showed the same behavior: the core tem-
perature (7;) was always in the range of 883-907°C, which is close to the equilibrium
temperature for decomposition of limestone at atmospheric pressure (896°C). In the fol-
lowing section, we will examine the reasons for this behavior.

19.2.1. Reaction Mechanism and Rate Control

In calculations of the reaction rate of solid particles, such as the calcination of limestone
patticles, it is convenient to assume that the reacting particles have a spherical shape. The
progress, or degree, of the reaction is expressed in terms of the fractional transformation of
the particle, R, {(e.g., at 100% reaction, R, = 1). For a topochemical reaction, the ratio
of the radius of the unreacted core, 7, to the initial radius of the particle, rg, is related
geometrically to the fractional degree of reaction, R., as follows:

3
R.=1— (1) or 7 =rp(1 — R)V2, (19.2.6)

70

Therefore, the thickness of the reacted layer can be expressed as follows:
To—7=rq [1 —-(1- Rz)m] : (19.2.7)

As we have noted earlier, the rate of a gas-solid reaction can be affected either by
gas diffusion or by chemical reaction at the interface. However, in the case of the Turk-
dogan experiments [4], the sustained large temperature difference between surface and core
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Figure 19.5. Temperatures measured during calcination of CaCOj3 spheres (4.15 cm diameter)
in argon (1 alm, fumace lemp. = 1332°C; [4]).

temperatures during decomposition shows that the diffusion and reaction phenomena are
 relatively fast in comparison to the rate of heat conduction from the surface to the core of
the particle; accordingly, the overall heat of reaction is controlled by heat conduction.

This can be expressed mathematically by equating the rate of heat transfer by conduction
through the calcined shell to the rate of absorption of the endothermic heat of calcination:

2, 4T o &(ncacos)
4mrke — - = AHj e (19.2.8)
- where AHYJ is the heat of decomposition reaction in J mole™!; CaCO, 15 the number of
moles reacted; k. is the effective thermal conductivity of reacted shell.

From the geometry of the situation, we can also state that, over a time interval dt
the number of decomposed CaCO3 moles is equal to the volume of reacted shell times the
molar density of CaCQj in the limestone:

d(ncaco,) = (dnr?drecscos (19.2.9)

where ¢caco, is the molar density of CaCQj in the unreacted pellet in moles em~3. Let
us now substitute for nc.co,, from (19.2.9), into (19.2.8) and for r by R.. (see (19.2.6)).
By assuming that a steady-state temperature profile is established across the reacted shell
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much faster than the rate of interface advance (i.e., quasi-steady state heat conduction), we
can integrate for R, as a function of time, ¢, to obtain the following correlation:

_ AHcgaco,78

t= m [1 -3(1- R=)2f3 +2(1 - Bq;)] . (19.2.10)

From the above equation, the time required for complete calcination of the particle (i.e.,
r=0R.=1)1s
o AHecaco,7a
I~ 6k (T, - T2)

If we now divide the actual time of calcination, ¢, by the time fequired for complete
calcination, (tf, for £, = 1), we obtain the dimensionless time ratio 7 as a function of the
degree of reaction, R.: '

(19.2.11)

: % —r=1-3(1-R)¥*+2(1-R,). (19.2.12)

It should be noted that the above equation was obtained for a constant surface tempera-
ture (7). However, as noted earlier, in the Turkdogan experiments [4], a certain amount of
time passed before the limestone particles reached a steady-state surface temperature (Fig.
19.5). By analysis of these data, Kellogg [3] calculated the value of this initial period
(t:/t5) to be approximately 0.145 for all tests. This time cormrection was then introduced
in (19.2.10) and the following correlation was obtained for time required for reaction as a
function of 7, and the difference between surface and decomposition temperatures:

- —_—-1'(2; "_l;f; ; o145+ (1- 30— B.)** +201 - R.))]. (19.2.13)

Equation (19.2.13) was solved for B, = 0.99 (i.e.,, at 99% decomposition) and T} =
896°C, for particles ranging from 0.018 to 3 cm in diameter and 7', values in range 1050—
1200°C. Some of the results are shown in graphical form in Fig. 19.6. For example, at
a surface temperature of 1200°C, a 2-cm sphere requires about 500 seconds to decompose
fully; at 1050°C, the required reaction time is nearly double.

1t should be noted that in a different reaction system, where the overall rate of reaction
is controlled by diffusion through the reacted layer, 7 can be expressed by an equation
identical to (19.2.12); also, the controlling rate equations will be of similar form to the
other equations shown above. However, in that case, the driving force is the concentration
gradient across the reacted shell and the effective thermal conductivity is replaced by the
effective diffusivity of the reagent. This case was developed in a pioneering textbook by
Levenspiel [5]. '

19.3. REDUCTION OF IRON OXIDE: CONSTANT RATE
OF INTERFACE ADVANCE

In certain gas—solid and liquid—solid reactions, the rate of chemical reaction at the interface
is much slower than the other rate phenomena; therefore, it controls the rate of overall
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Figure 19.6. Time required for 99% decomposition of CaCOj3 sphefes of various sizes at
1050°C (upper curve) and 1200°C (lower curve, [3]).

reaction. Under these conditions, the overall rate of reaction A + B = C + D is expressed
by the chemical rate equation (Chapter 18):

s =g = k,.(41r'r?) C(XA,;, - XA,e.); (19.3.1)

where A is the gas species reacting with solid species B, X 43 and X4, the bulk and
equilibrivm concentrations of A, and rip the number of moles of B reacting per unit time:

_ (4wr? dr)ep
hp = —t 2%

e (19.3.2)

where cp,, denotes the molar density of B in the unreacted solid. By combining (19.3.1)
and (19.3.2) and noting that the interface area 472 appears on both sides of the equation,
we obtain: ‘

d
B0 2 = (XA — Xa). (19.3.3)

Equation (19.3.3) shows that the rate of interface advance, dr/dt, of a chemically-
controlled reaction is constant; or, alternatively, that the reaction interface advances towards
the center of the reacting particle linearly with time.

As discussed in §19.2, the radius of the reaction interface can be related to the fractional
degree of reaction, R., of the particle. Thus, at the beginning of reaction when r; = ry,
R: = 0; also, at complete reaction, i.e., at Bz = 1, 7; = 0. In between the two extremes,

R.=1- (—)3 , (19.3.4)

where 7 is the initial radius of the particle.
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Figure 19.7. Rate data for reduction of iron oxide particles (pp is the density of unreduced
oxide} [6].

Thus, for a chemically controlled reaction, the dimensionless time of reaction, T, re-
quired to effect a certain degree of reaction, R.., can be expressed as follows:

% =7=1-(1-R.)", (19.3.5)

where 1 is the ttime required for complete reaction of the particle.

The linear advance of the reaction interface with time for such reactions denotes that
the time required for a certain degree of reaction is proportional to the particle diameter.
An example of this type of reaction is the reduction of iron oxides by hydrogen or carbon
monoxide. As illustrated by the typical reduction data plotted in Fig. 19.7 for iron oxide
particles of different sizes reduced in hydrogen atmospheres [6], a plot of the experimental
results in the form of the function [1 — (1 — R,)!/3] against time yields a straight line. The
slopes of these lines are a function of particle size and temperature.

McKewan was the first researcher to recognize that the interface advance of iron re-
duction was constant with particle size (Fig. 19.7, [6]). On the assumption of constant
rate of interface advance and by providing an Arrhenius-type correction for the temperature
effect, a very large number of iron reduction data by hydrogen were cormrelated by means of
the graph shown in Fig. 19.8 [7]. This plot shows that despite the differences in types of
iron oxides included in this correlation, the time of reduction increases proportionally with
particle diameter.

"On the same plot (Fig. 19.8) are shown some experimental data for iron reduction by
carbon monoxide. The nearly four-fold decrease in reduction rate is a chemical phenomenon
which has not yet been explained.

In experimental studies of gas—solid reaction rates, a single particle of the solid is usually
suspended in a flowing stream of the reagent gas. In such cases, in order to minimize the
effect of mass transfer through the gaseous boundary layer around the particle, it is necessary
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Figure 19.9. Effect of Reynolds number on rate of reduction of FeCly particle [8].

t0 maintain an adequate flow of gas. This is illustrated in Fig. 19.9 [8] which shows that the
rate of reduction of a 0.78 cm sphere of FeCl, particle (slope of plot in Fig. 19.9) increased
as the flow velocity of the reducing gas (hydrogen) was increased. At particle Reynolds
numbers above 25, there was no further noticeable effect of the gas flow around the particle.
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This may indicate that beyond Re > 25 the rate of reduction was controlled by chemical
reaction at the interface.

19.4. REFINING OF METALS BY GAS INJECTION

In some metal refining processes, an inert gas is injected at the bottom of the molten metal.
As the gas bubbles ascend to the surface of the melt, they produce a mixing action and they
promote the removal of unwanted impurities from the metal. Examples are the removal of
antimony from lead (lead softening), the Argon Oxygen Decarburization (AOD) process for
the refining of stainless steel, and the degassing of liquid steel under vacuum,

Let us consider the argon degassing of liquid steel in a ladle. Argon gas is injected
into the molten bath by means of a porous refractory plug located at the bottom of the ladle
(Fig. 19.10) while the surface of the melt is subjected to a vacuum of about 1300 Pa. In
the example shown in Fig. 19.10, hydrogen (4-8 ppm), nitrogen (40-70 ppm) and oxygen
(200600 ppm) are to be reduced to levels of 1-2, 20-30, and 0-50 ppm, respectively.
Part of the gas removal takes place as the argon bubbles rise through the melt and part by
evaporation at the surface of the metal bath.

In order to quantify the rate of surface evaporation, it is reasonable to assume that as
each argon bubble breaks through the surface (Fig. 19.11), it brings to the surface a new
element of molten steel. These fluid elements are assumed to remain on the surface a finite
time interval, which depends on the rate of arrival of another gas bubble at the same location
of the liquid/gas interface. For example, if bubbles arrive at a certain location at the rate of
one bubble every two seconds, then the finite time interval at the surface may be assumed
to be equal to 2 seconds, and the rate of surface renewal of the surface is equal to 0.5 s™1.

In contrast to gases dissolving in aqueous solutions, which maintain their molecular
state, dissolved gases in metals are in atomic form. For example, as dissolved hydrogen
reaches the surface of the melt, the atoms must recombine to molecules before evaporation
can occur:

2[H], — Hy, (19.4.1)

where the brackets indicate that hydrogen is dissolved in the metal in atomic form and the
subscript s indicates the concentration of hydrogen at the surface of the melt.

Because of the vacuum above the melt, it can be safely assumed that the removal
of hydrogen gas is not controlled by gaseous diffusion. Also, the rate of the chemical
combination of the hydrogen atoms to molecular hydrogen at the surface of the melt is
very high, and X }f'_, = 0. Therefore, in this case, the overall rate of hydrogen removal is
controlled by mass transfer from the bulk of the melt, where the concentration of hydrogen
is cg s, to the surface of the bath, where cy,, can be assumed to be zero. Adopting the
surface renewal model which was described earlier (§17.3.2), we can express the mass flux
of hydrogen atoms to the surface as follows:

Dy_
Ny = kaps(Xprp — X)) =2 :1 r PsXpp (19.4.2)
<

where Dy_p. is the diffusivity of hydrogen through liquid iron and t. is the residence time
of an element on the surface, or the inverse of the surface renewal rate.
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Figure 19.10. Removal of impurities from steel by vacuum degassing.

By inserting the values of Dy_p. = 90 x 107% em® s7%, t, = 25, X, = 8 ppm =
8 x 1076 and steel density = p, = 7.3 g cm™? in (19.4.2), we obtain:

90 x 10~°

0.5
— ) X73x8x107%=140x10"%gHs 1em2.

Nij=2x (
Example 19.4.1

Molten iron at 1500°C containing 0.01% oxygen by weight is brought in contact with liquid
slag containing 30% FeO by weight. If the equilibrium constant, or partition coefficient, for
oxygen atoms between slag of this activity and metal, for reaction

(FeO), = [Felm + [Olm
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Figure 19.11. Flotation of metal droplels by bubbles rising through melt.

is
__[o]
€ (Fe0),
estimate the relative importance of the slag phase and metal phase resistances to mass
transfer.

As discussed in §17.5 (see (17.5.4)), the respective mass transfer resistances for the
two phases are

=33x1073,

K, 1
d —
kd,s kd,m
or
3.3 x 1073 and L
kd,a kd,m.

It can be seen that the mass transfer coefficients in the slag and metal phase are
“weighted” by the value of the equilibrivm constant between the two phases. Therefore,
even when the rate of chemical reaction at the interface is not controlling, as it is not in this
case, the chemical equilibrium constant can have a major influence on the rate controlling
phenomena. For example, in this case, the overall transfer between slag and metal may be
controlled by the resistance in the metal phase, despite the fact that the diffusion and mass
transfer coefficients in the metal are greater than in the slag.

19.5. FLASH REDUCTION OF ZINC CALC]NE PARTICLES

In a proposed process for zinc production, zinc calcines (58% Zn0O, 22% ZnO-Fe, 03, balance
Si0,, Ca0) are reduced with coal and oxygen in a flash reactor similar to the Outokumpu
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Figure 19.13. Schematic representation of rate determining steps for solid reduction.

process for copper production (Fig. 19.12). The objective is to produce an environmentally
acceptable silicate slag, to be discarded, and zinc vapor, to be collected in a zinc condenser.
The reducing agent is carbon monoxide and is produced in the reaction shaft by the
partial oxidation of the inlet coal particles by the Oy in the inlet gas. Carbon monoxide then
reacts with ZnQO in the calcine particies to produce carbon dioxide, which back-reacts with
carbon to regenerate CO and zinc vapor. The principal reaction is the production of zinc

vapor:
ZnO{s) + CO(g) = Zn(g) + CO2 (g). (19.5.1)

The partial zinc pressure in the process gas will be controlled at less than 0.2 atm. The
above reaction is endothermic and the equilibrium constant increases rapidly with tempera-
ture [10]: : '

: __Pcoz Pin = e(—42550+2s.7'r)1m'_

Pco @zZno

(19.5.2)

e~
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A simplified phase diagram for the equilibria of zinc and iron reduction with carbon
monoxide is shown in Fig. 19.14 [13]. It shows the CO2/CO equilibrium ratio as a function
of temperature for the zinc oxide reduction, at different partial pressures of zinc.

In this section, we will examine the development of a mathematical model of the gas-
solid rate phenomena in the cylindrical flash reduction shaft of this process (Fig. 19.12); for
simplicity, this model will be unidimensional, i.e., the velocity, temperature and concentra-
tion of the gas-solids stream will be assumed to be uniform in the radial direction.

19.5.1. Mass Transfer Through Boundary Layer
As shown by (19.5.1), two gas molecules are produced for each molecule of CO diffusing
inward through the boundary layer:

Nco = =Ngo, = —Nzn,

net bulk flow = Ngg — Noo, — Nzo = —Nco. ' (19.5.3)
Therefore, in this case there is a net bulk flow (Chapter 14) agamst the flux of the diffusing

CO:
dXco
dr
By separating the Ngp terms and integrating across the boundary layer thickness §,
ie., for Xco = Xco,s at 7 = 7, (surface of particle) and Xco = Xcop at 7 =1, + 6, we

obtain:
Dco cln 1+ Xcop _ kg cln 1+ Xcop
& 1+ Xco,, 1+ Xco,s ’

Ngo = —Decoc — XcoNco (19.54)

Nco = (19.5.5)
where ¢ is the molar gas concentration and kg is the mass transfer coefficient and can be
represented by the Ranz—Marshall equation (see (17.4.2)):

Sh = 2 + 0.6Re'/28c!/3, (17.4.2)
The corresponding molar flow of CO is obtained by multiplying Nco by the particle surface:

1+ Xcop

ngo = 4mr2 kg e ln :
mgo AT, RgC 1+Xco,,

(19.5.6)

19.5.2. Diffusion Through Reacted Layer

We now need an expression for the rate of diffusion through the reacted layer. To simplify
this presentation, let us assume that the iron oxide content of the calcines is not reduced
appreciably and remains as a porous shell around the unreacted core (Fig. 19.13). The molar
flow of CO diffusing through this layer is expressed by an equation similar to (18.3. 5) and
also to (19.5.6), since we still have to deal with a net bulk flow:

) 4T, T; ’ 14+ Xco.
= 0T P eln 26
mCO (T‘, _ '.f"') eﬂ'

, 10.5.7
1+ Xco,i ( )
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Figure 19.14. Phase diagram for zinc and iron reduction by carbon monoxide.

where Xco,; is the mole fraction of CO at the reaction interface, 7 = 4, and the effective
diffusivity (see (14.7.15)) can be expressed [13] as follows:

0.5 :
Deg = ;Dco = TDCO = 0.125D¢0, (19.5.8)

where ¢ is the porosity and 7 the tortuosity of the reacted shell (§18.3).

By merging (19.5.6) and (19.5.7) we can eliminate the intermediate molar fraction of
Xco,s at the surface and combine the diffusion coefficients through the boundary layer and
the reacted layer into one combined diffusion coefficient: '

1+ Xcop

T'T!-co = 4‘.‘1’1‘3 kdi&' eln 1+ Xco ™)

(19.5.9)

where
1 1 ry (15 — 'r,-)
— 422 L

= 19.5.10
kag ke 7i Deg ( )

19.5.3. Chemical Reaction at Interface

The following correlation has been found [15-17] to represent the chemical rate coefficient,
k., of zinc oxide reduction by CQ in the range of 800-1200°C:

Nco

k. =
c(Xco,: — Xco,e)

= 3.55 x 1073 ¢~ 17700/RT (19.5.11)
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where Ngo is expressed in mol s~! cm™% Therefore, the corresponding molar rate of CO
reaction at the interface is

rgo = 4nr? x 3.55 x 1073 e 1700 ART o (¥ . — Xeo.o). (19.5.12)

It is now necessary to determine the equilibrium concentration of CO at the reaction
interface. This can be done by relating X¢g e to Xco,,; by means of K, and then developing
the diffusion equations relating Xco, i to Xco, s (§18.3). However, there is an alternative
method: Let us assume that for every 1 mole of CO reaching the reaction interface, a fraction
z reacts with ZnO to form z moles of CO; and z moles of zinc vapor (chemical reaction
of (19.5.1)), thus leaving (1 — z) moles of unreacted CO. Therefore, the total amount of gas
after reaction is (1 + z) moles for every z mole of CO reacted; accordingly, at equilibrium

conditions (i.e., when the diffusion of Zn (g) and CO; away from the interface is relatively
slow) and for az,0,. = 1 we have '

Kc _ (1+z) 0+z)

“T-2/0+2) (19.5.13)
and by solving for 2: o .
- K 1/2 )
z= (1 - }{ ) : (19.5.14)

From the value of the fraction z of CO reacted we can calculate the value of X¢o .
(= (1 — 2}/(1 + 2)). On the basis of (19.5.14) for z and using the values of K, from the
free energy for zinc oxide reduction reaction [4], the equilibrium concentration of CO at
the reaction interface, Xco, . has been calculated as a function of temperature and is shown

in the following tabulation [13]. It can be seen that the effect of temperature on X¢g . is
significant,

T, °C K, - Xeoe T,°C K, Xcoe

900 0.007 0.842 1150 0.202 0.418
1000 0.033 0.698 1200 0.340 0.330
1050 0.063 0.608 1250 0.552 0.253
1100 0.115 0513 1300 0.867 0.189

19.5.4. Overall Rate Coefficient

We now have expressions for the rate of the two diffusion steps and the reaction step. The
two rate coefficients (see (19.5.9) and (19.5.12)) can be combined intc a single algebraic
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expression, as was done in §18.3, by approximating the logarithmic functions of the diffusion
rate equation (19.5.9) by the first two terms of a series expansion:

1+ Xcop _ Xcos — Xco,i XZo~ Xbo,;
1+Xcos  l+Xcops (14 Xcop)

140.5Xco +0.5Xco .')
=(X - Xcoi - : -
(Xcop — Xco,i) ( T+ Xcos +

(19.5.15)

The second term in parentheses in (19.5.15) represents the effect of net bulk flow on
the diffusion of CO. It shows that this effect is negligible when Xco,; is close in value to
Xco,s; also, that the adverse effect of the net bulk flow on CO dlffusmn is at 2 maximum
when X¢o,; is at its minimum value (i.e., in this case, Xco; = Xco,e). Therefore, it is
reasonable to use the following modified expression of diffusion rate equation (19.5.9):

oo = 4772 kg c(Xcop — Xco,i) (19.5.16)

where kjj; is the combined diffusion coefficient (i.e., kais, (19.5.10), corrected for the eﬁeci
of net bulk flow due to diffusion (see (19.5.15)):

-1
J— 58X . e
. (1 G T)) (1+05 cop +0.5Xco, ) (19.5.17)

4~ \ks 7 Dex 1+ Xcop

The form of this 'cquation now allows us to merge it with the chemical reaction rate of
(19.5.12) into a single rate equation where the concentration driving force is Xco,6— Xco,.:

Thco = 4177 koy ¢ (Xcop — Xco,e) (19.5.18)

and the overall rate coefficient, koy, for the reduction of ZnO by CO is defined by

1 1 1 "'3
E - i + (3_55 x 103 3-17700;m=) ? (19.5.19)

The rate of reaction of the carbon particles with oxygen is computed by the rate equation
presented in §19.1. Comparison of the rate coefficient of carbon combustion, and also that
of the Boudouard reaction for regeneration of CO, with (19.5.11) for the reduction of ZnO
shows that the latter is much slower; therefore there is ample carbon monoxide in thc
gas-solids stream for zinc reduction.

19.5.5. Gas and Particle Velocities

The gas-jet stream entering at the top of the reactor under isothermal conditions and *

expansion, i.e., in the absence of the reactor walls, would expand at an angle of about 22°.
In order to determine the rate of expansion in non-isothermal flow in a confined space, it
is necessary to solve the equations of motion in turbulent flow, as discussed in Chapter 7.
However, for this simplified unidimensional model we can assume that the jet cone expands
at the angle of 22° plus an additional amount due to the volume expansion with increasing
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1: INITIALIZATION
)

FOR j = 1 TO 10000
1

2: DATA FOR GAS
L
FOR i = 1 TO nsf
i

3: DATA FOR SOLIDS

4: HEAT/MASS TRANSFER,
RATE OF REACTION

5: PARTICLE TEMPERATURE
i
NEXT i
1

6: GAS TEMPERATURE

7: UPDATE OF VALUES AND
PRINT TO FILE/SCREEN
1
NEXT j

Figure 19.15, Schematic flowsheet of the computer program.

temperature; accordingly, the diameter of the gas/particle stream at distance z below the
point of entry is:

5.\ 173 T\ 1/3
der = (de0 + 2z tan 22°) (f) = (d.,0 + 2z tan 22°) (?z) , (19.5.20)
0 0

where d o and d. . are the diameters of the gas/solid cone at the entry point and at distance
z below it, and 7y and 9. the volumetric flow rates at 7y and 77

The particle size distribution is divided into a convenient number of size fractions. The
particle velocity relative to the gas is calculated from the Stokes equation for terminal ve-
locity (see (8.6.9)). This value is used for calculating the heat and mass transfer coefficients
to particles. The sum of the particle and gas velocities is used to calculate the residence
time of a particle in a finite distance increment Az. '

19,5.6. Heat and Mass Transfer Coefficients

The convective heat transfer coefficient between the turbulent gas flow and the reactor
wall, hgy, may be calculated from a comrelation of the type Nu = f(Re, Pr) for turbulent

flow through a pipe (Chapter 12, see (12.6.3)). For a small experimental flash reactor, the
following correlation was found to apply [14):

Nu = 0.117Re?#pr?/3, (19.5.21)
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Figure 19.18. Computed fractional degree of reduction of zinc calcine particles {wl%).

The convective heat transfer coefficient between particle and gas can be calculated from

the Ranz—Marshall correlation (Chapter 12, see (12.28)): ,_,__ﬁ( N
) 42.6.4%)

Nu, = %ﬁi = 2 + 0.6Re}/?Pr'/3, (19.5.22)
gas

where kgo, denotes the thermal conductivity of the gas, Rep is the Reynolds number for
particles and Pr the Prandtl number, as defined in Chapter 12 and Table 2.1.

The mass transfer coefficient between particles and gas, kg, is calculated from the
Ranz-Marshall equivalent correlation for mass transfer (Chapter 17, see (17.4.2)).

19.5.7. Particle and Gas Temperatures

The particle temperature change with time is calculated by equating the heat accumulation
within a particle of size fraction ¢ to the convective (Chapter 12) and radiant (Chapter 13)
heat transfer from the environment minus the endothermic heat of reduction. Since the
volume/surface ratio of the particle is d,,/6 this balance is expressed as follows:

dpppCpyp AT, s (TN,
% Etg =hpg(Tg —T,) + g0y (Tg - (E,i Tp

€y +1
+ 2

(19.5.23)

mco
23 (T:, - T:) - 47”.2 AHr::

A

where hp, denotes the convective heat transfer coefficient between particle and gas, o is
the Stefan—Boltzmann constant, ., &,, and €, are the emissivities of the wall, particle, and
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gas, and AH, . is the heat of reaction. The time mcrement At corresponds to the dlstance
increment Az as discussed earlier.

The gas temperature is computed from a similar balance on the heat accumulation
in a cylindrical “slice” of reactor volume of width equal to the finite element Az. This
accumulation is equal to the convective and radiant heat transfer rates from all particles
inside the “slice” plus the convective and radiant heat transfer through the periphery of the
“slice,” i.e., the area wd, Az, plus the chemical heats of combustion (C and CO with mput

oxygen):
T\ 0-68
bpe(Ty — Tp) — €€ (T; - (?g) T;)] |
P (19.5.24)

A
_ T;):l &,comb AHcomb,

AT,
pgcprg At = EnAP

i=1

4 £
* o [T =T+

where hg,, denotes the heat transfer coefficient between gas and reactor wall and AH oy
and AR, comb/At are the heat and rate of combustion, respectively. The number and size
fractions of particles in the “slice” are computed from the ratio of solids and gas feed rates
to the reactor, corrected for volume expansion due to temperature and chemical reaction.

19.5.8. Numerical Solution N

We can now proceed to solve the three principal equations, i.e., the molar flow rate of
CO for reduction (see (19.5.18)), particle temperature (see (19.5.23)) and gas temperature
(see (19.5.24)). These equations are coupled and cannot be solved analytically. However,
a numerical solution can be obtained readily by expressing these equations in computer
language, e.g., using the program BASICA, entering property and system values, initial and
boundary conditions and selecting appropriate distance and time increments.

A schematic flow sheet of the computer program is shown in Fig.19.15. After initial-
ization, the program proceeds iteratively to calculate values of AT}, AT, AR., etc. for
each finite incremerit of distance and time, starting from the point of entry. Thus, it provides
axial velocity, temperature and concentration profiles as well as degree of reaction attained
within a certain length of reactor. Some typical results in the reduction of zinc calcines,
computed for a smali experimental flash reactor, are shown in Figs. 19.16-19.18 [13].
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TWENTY

Flow Behavior in Chemical Reactors

We will conclude our discussion of chemical rate phenomena with an introduction to batch
and continuous flow reactors and some examples of the effect of flow behavior on reactor
performance. For further reading on this subject, the reader is referred to Chemical Reaction
Engineering by Levenspiel {1}, Chemical Reactor Analysis and Design by Froment and
Bischoff [2] and Elements of Chemical Reaction Engineering by Fogler [3].

Chemical reactors can be classified into two broad classes: Batch reactors in which
materials are charged, reacted over a period of time and then discharged; and continnous
flow reactors, where reagents are fed continuzously at one point and products are withdrawn
continuously or semicontinuously at another. Both types of reactors may involve a number
of stages, such as heating, reacting, cooling and so forth.

In batch reactors, the separation of these processing stages takes place in the same space
but at a different time; in continuous flow reactors the various “stages” occur simultaneously
but are separated in space (Fig. 20.1). In both types, it is important to establish the residence
time of materials in a particular stage of the processing sequence. Also, the temperature and
concentration profiles in a reactor have a major effect on its performance.

In a batch reactor, all elements of fluid have the same residence time. In a continucus
flow reactor, parts of the fluid may move through the system slower than others, as in the
case of laminar flow through a tube (Chapter 4). The average residence time of all fluid or
fluidized elements can be calculated by dividing the volume of materials in the reactor by
their volumetric flow rate in and out of the reactor:

active reactor volume _ V.
volumetric rate of fluid low = o

tn.ve -

(20.1.1)

The variation of actual residence times from the calculated average, that is the dis-
tribution of residence times, is an important characteristic of the reactor and influences
appreciably its performance. A continuous flow reactor in which all fluid elements have the
same residence time is called a plug flow reactor.

At the other end of the spectrum of continuous flow reactors, is the back-mixed,
or perfectly mixed reactor: material fed at one point is very rapidly mixed throughout
the volume of the reactor. This type of reactor is also referred to in the literature as a
continuous-stirred tank reactor (CSTR).

When the velocity profiles in a reactor can be established on the basis of fluid flow the-
ory, the distribution of residence times of fluid elements in the reactor are easily calculated.
In the absence of such information, engineers have developed the concepts of continuous
flow reactors which will be introduced in this chapter.
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Figure 20.1. Batch and continuous flow reactors.

20.1. TRACER TECHNIQUES: STEP INPUT

The residence time distribution of a fluid flowing through a vessel can be determined by
means of tracer tests. Basically, these involve the addition of a tracer (e.g., dye, radiocactive
material, chemical substance) into the stream entering the vessel, and then measuring its
concentration in the exit stream. The principal tracer techniques are:

a. Continuous addition of tracer to the inlet stream, starting at a certain instant

~ of time {step input).

b. Addition of a finite quantity of tracer over a very short time interval ‘in
comparison with the average residence time of fluid in the vessel (pulse
input).

To illustrate the step-input technique, let us consider a reactor vessel through which
there is a continuous flow of materials. At time ¢ = 0, we start adding a tracer into the inlet
stream to the reactor, at a rate which is maintained constant throughout the experiment. At
the same instant, we start sampling the exit stream and plotting the exit concentration of
tracer as a function of time.

The results can be plotted in dimensionless, and thus more general, form by using the
variables I' for the dimensionless concentration and 7, for the dimensionless time:

i

ta.ve

F=e—e, 7= ,

c
&
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Figure 20.2. F-diagrams for plug flow, perfect mixing, and intermediate degrees of mixing.

where ¢; is the concentration of tracer in the inlet stream; ¢ is the concentration of tracer in
exit stream at time £; £,.. is the mean residence time of fluid in the vessel.

A plot of F' against 7 is called the F-diagram (or F' curve) for the system. The value
of F represents the concentration in the exit stream as a fraction of the inlet concentration
of tracer. The common characteristic of these diagrams is that at time zero the value of F'
is also zero, while for large values of t/f,,., F approaches unity. This, of course, reflects
the fact that after a sufficiently long period of time all the fluid originally in the vessel
(i.e., before the step input at ¢ = 0) is replaced by “new” fluid having the inlet tracer
concentration. '

The shape of the F-diagram varies considerably between different reactors and can
provide useful information as to the flow characteristics in a vessel. The principal types of
flow are described below.

20.1.1. Plug Flow Reactors

In plug flow, or piston flow, all fluid elements travel through the vessel at nearly the same
velocity and do not intermix during their passage through the reactor. In this type of reactor,
a “step” change introduced in the tracer concentration at the inlet at time 7 = 0 (i.e,, £ = 0),
is reproduced exactly at the exit at time 7 = 1 (i.e., ¢ = t,.). Thus, the tracer arrives at the
exit point at the “expected time,” which indicates that there is no spread of residence times
and that all fluid elements spend the same length of time in the vessel (Fig. 20.2, “plug
flow™).

Although the ideal of plug flow cannot be attained exactly, the flow of fluids through
long packed beds or the motion of material through a cement or iron reduction rotary kiln
(Fig. 20.3) are close approximations.

20.1.2, Perfectly Mixed Flow

In back-mixed (or perfectly mixed flow), the tracer introduced at the inlet is dispersed in-
stantaneously and uniformly throughout the system. Therefore, the tracer appears at the exit
shortly after it has been introduced into the inlet stream, but the approach to the value of
F =1 is comparatively slow. At any given time the tracer concentration in the exit stream
is the same as that in the vessel. This behavior indicates that a fraction of the material
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Figure 20.3. Rotary kiln used for iron reduction.

remains in the vessel for periods much longer than ..., while other parts of the stream pass
through it very rapidly.

For perfect mixing conditions, and in the absence of chemical reaction, the material
balance on the tracer element A yields:

rate of change of concentration of A in vessel
= rate of input of tracer in inlet stream
— rate of outlet of tracer in exit stream,

which mathematically is expressed as follows:

V — — .
5 = vei — e, (20.1.2)
where V;. is the volume of fluid in the vessel; v is the volumetric rate of flow; ¢; is the inlet
concentration of tracer in the stream to the reactor; ¢ is the concentration of tracer in the
exit stream.

It can be seen that (20.1.2) has the form of a first-order rate equation. By integrating it,
we obtain the following equation for the I-diagram of back mixed flow (Fig. 20.2, “backmix
flow™): )

a = ci(l — e ¥/Vr) = ¢(1 — e /tae), (20.1.3)
or in dimensionless form:
F, = % =1—e e =1_¢", _ (20.1.4)

The idealized concept of perfect mixing may be applied as a good approximation to some
reactors, such as mechanically agitated leaching cells.

20.1.3. Plug Flow with Axial Mixing

As noted above, Fig. 20.2 shows the representative F'-diagrams for plug and perfectly mixed
flows. However, the flow in most vessels falls somewhere between these two extremes.
Some intermediate cases are also shown in Fig. 20.2. It can be seen that in such cases the
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Fipure 20.4. Zinc fluid bed roaster,

tracer front arrives at the exit point earlier than 7 = 1; then there is a rapid increase in the
value of F', which reaches unity at 7 > 1.

An example of such a reactor is the fluid bed roaster used in the oxidation (roasting) of
zinc sulfides (Fig. 20.4). Although fluid beds are regarded as well-mixed reactors, the results
of a radioactive tracer have shown (Fig. 20.5, [6]) that some of the solid particles moved
through the bed in plug flow, In Fig. 204, at ¢ = 0, the concentrate feed was switched
to concentrates containing some radioactive zinc. After a few hours, the feed was changed
back to “normal” concentrates; the plot of Fig. 20.5 shows the combined F-diagrams for
both of these step-changes in the feed stream for three tests.

20.1.4. Dead Volume Region

In some cases, there can be inactive or dead volume zones within a reactor. Because of
that, the bulk of the fluid spends less time in the vessel than is indicated by the calculated
average residence time. This type of behavior indicates inefficient use of the reactor volume
and should be minimized in practice.

In practical situations, dead volume zones may occur due to eddies trapped at sharp
corners, especially when material is introduced or withdrawn through a small port in a large
vessel, e.g., a taphole in a metallurgical furnace (Fig. 20.6), or due to large variations in
fluid viscosity caused by temperature gradients.

20.2. TRACER TECHNIQUES: PULSE INPUT

An alternative tracer technique, which is used more frequently than the step-input, is the
pulse input method. In this case, we introduce at the inlet end of the reactor a mass my,
of tracer “instantaneously,” i.e., over a time period which is very small in comparison with
tn.ve-

As in the previous case, the concentration of the tracer is measured with time in the
exit stream and the results are plotted in the form of the dimensionless exit concentration:

c
C= -?'I-l:/—v;’ (20.2.1)
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where my, is the mass of injected tracer; V; is the volume of fluid in the vessel.

The denominator of (20.2.1) represents the average concentration that the tracer would
reach if it were mixed instantaneously with the contents of the vessel. In cases where m;.
cannot be determined accurately (e.g., in radioactive tracer tests), the average concentration
of the tracer can be estimated from the weighted average of the exit concentrations during
the entire test. :

The results of pulse input tracer tests are plotted in the form of the dimensionless
concentration C' against dimensionless time (T = t/t,v.). These curves are usually called
C-dingrams and some representative plots, corresponding to the F-diagrams of Fig. 20.2,
are shown in Figs. 20.7-20.10. Comparison of the F'- and C-diagrams shows that the latter
follow a more distinctive pattern than the F'-diagrams for the various types of flow behavior;
for this reason, the C-diagrams are more useful for the characterization of flow systems.

The area under each C curve is equal to unity, since all the tracer introduced at the
inlet must eventually leave the system, i.e.,

f Cdr=1 ' (20.2.2)
0

In the idealized case of plug flow, the fluid element containing the tracer material will.
not mix with the rest of the fluid as it travels toward the exit of the vessel (Fig. 20.7). For a
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back-mixed system, the C-diagram has an initial value of unity and then decreases gradually
to zero (Fig. 20.8).

Following the reasoning which led to (20.1.3)-(20.1.5)) for the F-diagram from a step-
input tracer, we can readily show that the C curve is described by the following exponential
decay equation;

c .
C’ -_ — =1 f{(V 1) — —1ftave .2,
s -7 e e , (20.2 3)
or in dimensionless form:
Cr=¢", (20.2.4)
where : -
Cr = “ _ and 7=
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Comparison of this equation with (20.1.5) shows that the C curve is in fact a derivative
of the F curve. It can be shown that this is a general rule which is valid regardless of the
flow pattern. Therefore, we may write

dF,
dr

C, = (20.2.5)

In the case of plug flow with a small amount of axial mixing, the C curve exhibits a
maximum peak at 7 = 1 (Fig. 20.9). The spread of the curve about the median 7 = 1 can
be used to describe quantitatively the mixing conditions in the system, as will be discussed

" . shortly.

The presence of a dead volume region (Fig. 20.10, §20.4) is indicated by a maximum
in the C curve, cccurring at 7 < 1; at that peak, C > 1. The value of C and the location
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(dispersion model).

of this peak on the time axis can be used to estimate the extent of the dead volume zone in
a vessel (§20.4).

20.3. QUANTITATIVE EVALUATION OF TRACER RESULTS

In order to characterize quantitatively the mixing conditions in a reactor, it is necessary to
develop a mathematical model and then adjust the parameters of the model until it matches
the experimental results satisfactorily. The numerical values of these parameters may then
serve as a quantitative measure of the mixing conditions in the vessel.

20.3.1. The Eddy Diffusion Dispersion Model

The dispersion model is based on the assumption that mixing is brought about by eddy
diffusion in the fluid (Fig. 20.11), a concept which was also discussed in Chapter 7 on
turbulent flow. It is assumed that the dispersion of the tracer material in the fluid follows
the laws of diffusion and that the mass flux is proportional to the concentration gradient.
The constant of proportionality is called the eddy diffusivity and is not a molecular property
of the fluid, but depends both on the fluid and a number of other parameters in the particular
reactor. '

According to this model, the rate of dispersion of the tracer in a continuous flow system,
in the absence of chemical reaction, is expressed by an equation similar to (15.1.8) derived
in Chapter 15 for describing diffusion in the presence of net bulk flow:

g _ o &c | B

8t ¢ Bx2 Oz
where D, is the eddy diffusivity; « is the velocity‘in the direction of the flow; I is the
length of the reactor; z is the distance along the reactor in the direction of the flow.

The boundary conditions required for the solution of (20.3.1) depend on the method of
introducing the tracer. For the pulse input technique, the boundary conditions are:

for 0 <z < L, (20.3.1)

=
/c*i! dt =my, at =1L, (20.3.2)
0

de

32 = Oatx=0,z=1L, (20.3.3)
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Figure 20.13. Calculated C-diagrams for low values of Le = D /uL [1).

where ¥ is the volumetric flow rate through the reactor.

Equation (20.3.3) states that at the end walls of the reactor (z = 0, z = L) the
concentration gradient is zero, i.e., there is no eddy diffusion past the walls (Fig. 20.12).
For small values of D./ulL, the spreading tracer curve does not change much in shape as it
passes through the measuring point. Under these conditions, equation 20.3.1 can be solved
analytically [1] to yield the following symmetrical C-diagram:

Coo S _ 1 e~ (17 /(D fuL)} (20.3.4)

T mue/Ve o 2¢/n(D./ul)

Equation (20.3.4) shows that, according to the dispersion model, the tracer concentration
against time is a unique function of the dimensionless parameter D,/ul. This group is
equivalent to the inverse of the dimensionless Peclet number for mass transfer (Chapter 17):

Pe = ——, (20.3.5)
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Figure 20.14. Computed C-diagrams for flow ranging from perfectly mixed to plug flow [1].

and, for convenience, will be referred to in this text as the Levenspiel number (Le), in honor
of the chemical engineer {1] who contributed so much to the study of mixing phenomena
in reactors.

The C-diagrams represented by (20.3.4) are shown for various values of Le in Fig.
20.13. The Levenspiel number represents the ratio of material transferred by eddy diffusion
to that transferred by bulk flow. For small values of Le, the transfer of mass by mixing,
i.e., by eddy diffusion, is negligible in comparison to that by bulk flow and, therefore, the
system approaches the conditions in a plug flow reactor. At progressively increasing values
of D./uL, the flow approaches that of a perfectly mixed reactor.

For large degrees of dispersion, (20.3.1) must be solved by numerical techniques. Figure
20.14 shows the computed C-diagrams [1] for Levenspiel numbers ranging from zero (plug
flow) to infinity (perfectly mixed flow). It can be seen that for large values of D./ul the
curves tend to the pattern for perfectly mixed flow; at very low values a sharp peak appears
at 7 which characterizes plug flow.

As illustrated by Figs. 20.13 and 20.14 the shape of the C-diagrams is highly sensitive
to the value of the Levenspiel number. Therefore, these plots provide a satisfactory method
for computing eddy diffusivities from experimental tracer tests.
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Figure 20.15. Seclion of rotary reactor for batch precipitation of tellurium.

The Levenspiel number for a particular flow may be calculated by direct comparison of
an experimental curve to a series of C-diagrams (e.g., Figs. 20.13-20.14) or by using the
following expression for the variance of the experimental data [1]:

0% = 2Le + 2Le? (1 — e~ 1L%), (20.3.6)

where o2 is the statistical variance, or square of standard deviation of the spread of the
concentration around the mean residence time:

¢ 2
fe(t —tmean) dt
2= : (20.3.7)
f cdt
0

For small deviations from plug flow, the dispersion is symmetrical about the mean and
can be represented by the normal Gaussian distribution:

C = 1

~ 2,/a(D.Jul)

Figure 20.14 shows that for large values of the group D, /ul the curves tend to the pat-
tern for backmix flow; at very low values, a sharp peak appears at 7 = 1, which characterizes
plug flow (Fig. 20.7).

o~ (1= /I4(De fuL)] (20.3.8)

Example 20.3.1

In the electrolytic refining of copper, the impurities in the copper anodes are recovered in
the form of “slimes.” It has been determined experimentally that tellurium (Te) can be
separated by pressure leaching of the slimes in a basic solution followed by the following
displacement reaction by copper when sulfuric acid is added to the basic solution:

Te(OH)g + 5Cu® + 3H;S0, = CuyTe + 3CuSO; + 6H,0.

In this reaction, the metallic copper is in the form of metal shot brought into contact with
the pressure leach solution. It is required to design a reactor to process 3 m® h—1 of solution
containing 10 g/liter (10 kg m~3) of tellurium.

The rate of the tellurium precipitation reaction was studied in the rotary drum reactor
shown in Fig. 20.15 [7]. In batch operation, the experimental results showed that the
optimum operating conditions were as follows: Temperature: 103°C; copper shot diameter:
0.3 cm; pH: 2; speed of rotation: 10 rpm; reactor loading (volume of bath/volume of
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reactor): 50%; volume of copper shot/volume of solution: 0.35. Under these conditions, the
copper telluride formation is a first-order heterogeneous reaction and its rate is expressed as
follows:

dore
v;ol %‘ = _krAa(cTe - C'I'e.e)a (20'3'9)

where V. is the volume of solution in the reactor, A, the total surface area of copper shot

-in the reactor (interfacial area for reaction) and ¢re and cre, . are the actual and equilibrium
concentrations of tellurium in the solution. However, examination of the free energy of
the above chemical reaction at the stated pH and temperature showed that the reaction is
practically irreversible and therefore cye,. can be assumed to be zero.

It is required to calculate and compare the required volumes of a) a batch reactor, which
is loaded and unloaded at specified time intervals and b) a continuous flow reactor, which
is charged and discharged continuously.

Solution. It should be noted that the chemical rate constant of this heterogeneous
reaction, k,, has the dimensions of L t=! (Chapter 18). However, in this situation, where
the amount of shot present per unit volume of reaction is relatively constant, it is convenient
to consider the reaction as a quasi-homogeneous reaction and assign to it a modified rate
constant which incorporates the relationship of “surface area for reaction” to “volume of
reacting mixture,” as follows (§18.1):

dere
—2 = —k} (7o — 0Te,c) (20.3.10)
where 4
, ;L s
kr = ke Veol .

It can be seen that the dimensions of k. are t~!, as would be expected for a homogeneous
reaction.

As was mentioned in §18.1, the device of “transforming” a heterogeneous reaction
to a quasi-homogeneous one is used frequently in interpreting chemical reaction data, in
situations where the values of &k, and A, cannot be estimated separately but the product
k.A,/V can be measured experimentally. However, caution should be exercised in reporting
or scaling up such experimental data: The area/volume ratio must be reproducible in order
for the modified rate constant to be meaningful.

a. Design of batch reactor: Fig. 20.16 is a plot of the rate data obtained in an
experimental batch reactor for the optimum conditions. By plotting the decrease in e,
with time in semilogarithmic form, we obtain from the slope of this plot the value of k&,
= 3.1 h~!. First, we have to make a decision as to what will be the final concentration of
the tellurium remaining in solution after reaction: The semilogarithmic form of Fig. 20.16
shows that it will take just as much reaction time to reduce the tellurium concentration from
the initial 10 g/liter of solution to 1 g/liter, as from 1 to 0.1 g/liter.

In some cases, it may be necessary to recover as much as possible of the contained
metal from the solution, either for economic or environmental reasons. However, in this
case, the “stripped” solution is recirculated to the electrorefining plant so that we do not
need to go to a very low concentration. By choosing a final concentration of tellurium of

tre,; = 1 gfliter, we calculate from the integrated (20.3.10): '

Cle.f _ ket L= —d.1y 20.3.11
S A I (203.11)
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Figure 20.17, Material balance across a differential section of a reactor.

Solving the above equation we obtain t; = 0.75 h. If we now assume that the time
required to unload and reload the batch reactor is 0.5 hour per cycle, the volume of solution
to be treated per cycle is

m_:z " time per cycle _ax (0.75+0.50) 5 mS
h ~ operating time per cycle 0.75 B :

Therefore, the batch reactor must contain 5 cubic meters of solution. Maintaining
the same ratio of copper shot to solution (0.35/1) and the same reactor loading as in the
experimental tests (50%), we calculate that the required total volume of the batch reactor is

Vieactor = {5 m® of solution -+ 0.35 x 5 m® of coppershot) x % =13.5m°.
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Figure 20.18. Required volume of a real reactor (V) expressed as a multiple of the volume
of plug flow reactor (V) to attain same degree of reaction [1].

b. Design of continuous flow reactor: According to the diffusion model (§20.3.1), the
mass balance for the tracer across a differential element dz of the length of a continuocus
flow reactor (Fig. 20.17) can be stated as follows:

rate of accumulation = net mass transfer by eddy diffusion
— net mass transfer by bulk flow
— rate of consumption by chernical reaction,

Mathematically, this statement is expressed by the following modification of (20.3.1):

de d?c de

— = — — K 3.
a Ded.'z? u Ele for 0 <z <L, (20.3.12)

where k. is the chemical rate coefficient and L the length of the reactor. The boundary
condmons are:

de de
uc,-—uc—D,,-cE at =0 ET-—O at z = L. (20.3.13)

The solution of the above differential equation is shown in graphical form in Fig. 20.18
[1]. In this plot, the y-axis, V;/V;, is the ratio of the required volume of a mixed-regime
reactor at eddy diffusion D, to that of a plug flow reactor, for the same degree of reaction.
Evidently, as the degree of mixing increases, the concentration driving force for reaction
along the length of the reactor decreases and a longer residence time is rcquired to attain a
certain degree of reaction.

In a perfectly mixed reactor, the concentration along the length of the reactor is equal
to the concentration of the exit stream; therefore, the reactor volume required to attain a
certain degree of conversion is substantially larger than in the case of plug flow. This is
illustrated in Fig. 20.19 [1] which is a plot of the inverse rate of reaction per unit volume as
a function of the degree of conversion; the shaded areas represent the dimensionless times
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Figure 20.19. Comparison of residence times required in plug-flow (£,) and back-mix reactor
(tp) for any reaction kinetics (c4 i, ¢4, s: initial and final concentration of reacting species).
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Figure 20.21, Comparison of residence times required in four cells in series (Z,) and in back-
mix reactor ({;) for any reaction kinetics. .

required in a plug-flow and in a perfectly-mixed reactor for the reaction to proceed from the
inlet fractional concentration X 4 ; to the final, X 4 f.

One way to approach plug flow is by using a larger number of small reactor cells in
series so that the exit fluid from the first becomes the feed material to the second, and so
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on (Fig. 20.20). The effect of this arrangement is illustrated in Fig. 20.21, which is similar
to Fig. 20.19 and compares the relative volume of a back-mixed reactor with the volume
of four reactor cells in series. This arrangement of reactors in series is used routinely in
aqueous and organic liquid reactions but is not very practical for pyrometallurgical systems.

Returning to the generalized plot of Fig. 20.18, the z-axis, cs/c;, represents the required
degree of conversion; the solid lines represent differént degrees of eddy diffusion (expressed
by the Levenspiel number); and the dotted lines represent the product of the chemical rate
coefficient and the required residence time for a particular reaction.

With reference to our example, in order to determine the size of the continuous pre-
cipitation reactor it is necessary to estimate the value of the eddy diffusivity in such a
system. It was relatively simple to construct [7] a plexiglass model of the proposed reactor
(projected length to diameter ratio = 5) and load it with the prescribed quantity of copper
shot pér volume of solution, as determined in the batch reactor tests. A water flow was
used to simulate the tellurium solution in the projected continuous flow reactor. The water
model was rotated at the prescribed speed and a tracer pulse was introduced. Comparison -
of the obtained concentration curve with the calculated curves of Fig. 20.14 showed that the
Levenspiel number of the model was

D.
o = 0.18.

Now from Fig. 20.18, at the intersection of the required degree of conversion and Le = 0.18,
we obtain
kltave = 3.1.

Therefore, since k. = 3.1 h™1, the required residence time in a continuous flow reactor
under these mixing . conditions is approximately 1 hour. Of course, in the case of the
continuous flow reactor we do not have to allow for loading time, etc. Therefore, the
required “bath” volume of the projected continuous flow reactor is calculated to be

3 m3 residence time in mixed flow reactor _ 1 _ 3
h ~ Tesidence time in plug flow (or batch) ~ =~ 0.75 ~ '

Finally, by allowing for the volume of the copper shot (0.35 maft_m3 solution) and the
50% loading of the reactor, the total reactor volume is4 x 1.35 x 2 =10.8 m3. For the
projected length/diameter ratio of 5, the calculated inside dimensions of the reactor would
be about 1.4 ILD. x 7 m long.

20.3.2. Use of Dispersion Model in a Batch Reactor

The dispersion model is not limited to continuous flow systems, but may also be used to
describe mixing in batch reactors, in cases where the mixing mechanism is due to small
eddies rather than to an overall bulk, circulatory motion. A representative case is the open
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Figure 20.22. Comparison of experimental tracer results in an opén hearth furnace for steel-
making with projection of dispersion model, for D = 130 cm®/s [4].

hearth furnace for steelmaking, where metal mixing is brought about by natural convection
currents and by the action of carbon monoxide bubbles as they rise through the bath.

For example, in a study of mixing in an open hearth bath [4], a small amount of ra-
dioactive gold was introduced through the center door of the furnace and metal samples were
obtained periodically through the side doors. The samples were analyzed for radioactivity
and a typical set of experimental data of tracer concentration against time are shown in Fig.
20.22 (solid line). If it is assumed that the eddy diffusion is unidirectional from the center
of the furnace, at £ = 0, and that the furnace extends from —L > 0 > L, i.e., the furnace
length is 2L, the eddy diffusion may be represented by

de &%c _

a =D, E for —L<x < L. (203.14)
This equation may be regarded as a special case of (20.3-.1), where the bulk flow term,
u Oc¢/ 8z, is zero. Its boundary conditions are ¢ =0 at z = 0 and ¢ = 0, and '

de _
— =L =—-L e
% 0atz , T (20.3.15)

Comparison 0f£{20.3.14) with (15.2.1), which was used in Chapter 15 to determine the diffusion
of hydrogen atoms through a sicel plate, shows that they are identical but their boundary
conditions are different. Equation (20.3.14) was solved by Szekely (4) in the form of an
exponential series equation. Various values of eddy diffusivity, D, were introduced into this
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Figure 20.23, Analysis of C-diagram obtained from tracer test in a copper reverberatory
funace. ' '

equation and the corresponding plots of ¢ against ¢ were constructed. By comparing each of
these plots with the experimental data of Fig. 20.22, (4) Szekely concluded that the eddy
diffusivity in the metal bath was about 130 cm? s™. This high value was due to the reaction of
carbon with oxygen in the steel. There is spontaneous formation of carbon monoxide bubbles
throughout the molten metal {“carbon boil” conditions); as the bubbles rise to the fumace, they
impart energy to the liquid and result in intensive mixing.

20.4. MIXED MODEL

The mixed model, assumes that the reactor volume may be divided into fractions in each
of which there exists a simple well-defined flow pattern. The flow patterns that are most
commonly used are: plug flow volume (V}), backmix flow volume (V.,), and dead volume
(V). This represents the portion of the liquid in the bath that is moving so slowly that it
may be assumed to be stagnant. According to the definition by Levenspiel [1], the cut-off
point between “active” and “stagnant” fluid may be taken as material that stays in the vessel
for a period greater than twice the mean residence time.

A simple representation of such mixed models is shown in the insert of Fig. 20.23;
the plug flow and backmix flow regions are in series, while. the dead volume region is
in parallel. The usefulness of the mixed model lies in the fact that the experimentally
determined C-diagram for a particular system can be analyzed to determine the relative
volumes of plug flow, back-mix flow, and dead volume regions. In this manner, the flow
conditions in the system can be described quantitatively and compared with C-diagrams

obtained after necessary operational changes (e.g., changes in flow, geometry, introduction
.of dams or agitators).
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As an illustration of the use of this model, let us consider the experimentally determined
C-diagram of Fig. 20.23. The tracer material first appears at the exit of the vessel at time
1,. Dividing ¢, by the calculated average residence time of fluid in the vessel, we obtain
. the fraction of reactor volume which can be assumed to be in plug flow:

b _ Vo
= —— = = 20.4.
Tp eV (20.4.1)
where V}, is the volume of fluid in plug flow and V is the total volume of fluid in the reactor.
Figure 20.23 also shows that the maximum tracer concentration is observed at time
t/tave < 1 and has a value

Crax =

Cmax
>1 20.4.2
eV 0 ( )
where eqq is the peak concentration of tracer at the exit.
This behavior indicates the presence of dead volume regions in the vessel. To determine
the fraction of dead volume, we must first calculate the actual mean residence time of liquid
in the reactor from the following statistical definition:

actual mean residence time trean

= - - = . 20.4.
Tmean = ©olculated mean residence time(= V/7) tave (20.4.3)

‘It is obvious that the actval mean residence time will differ from the calculated di-
mensionless mean (i.e., reactor volume/volumetric flow rate} only in the presence of dead
volume regions. It can be readily shown that the following relationship applies:

Va _

v 1 — Tmean; (20.4.4)

where V; is the volume of the dead volume region in the vessel. Equation (20.4.4) shows
that in the absence of dead volume (V3 = 0),

tmean = Lave-

From the values of the plug flow volume (see (20.4.1)) and the dead volume region
(see (20.4.4)), we can calculate the volume of the back-mixed region from the equation

V, + Vi + Va =V, (20.4.5)

which states that the sum of the plug flow, dead volume, and backed-mix volumes must be
equal to the total volume of fiuid in the vessel.

The back-mix flow volume may also be determined from the value of the maximum
concentration, which, as shown in (20.4.2) is greater than vnity. The lesser the degree of
mixing in the vessel, the higher will be the value of the peak concentration. The following
relationship applies for a mixed model:

Conae = . . ' (20.4.6)
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Figure 20.24. Schematic diagram of a reverberatory fumace; converter slag is charged at the
left end and “clean” slag is tapped at the other end.
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A “reliability” test for a mixed model is to compute the value of V,, from (20.4.6)

. and see whether it matches the value obtained by difference from the computed V; and Vy

values (see (20.4.5)). The use of the mixed model is illustrated in the following example.

Example 20.4.1. Flow in a Copper Reverberatory Smelting Furnace

Copper concentrates are smelted in a reverberatory furnace to form two liquids phases, a
sulfide matte and an iron silicate slag (Fig. 20.24). The matte is tapped and subsequently
converted to metallic copper in a converter, while the reverberatory slag is skimmed and
discarded. Molten slag from the converting operation is returned intermittently to the rever-
beratory furnace in order to recover most of its copper content.

In an investigation of methods for decreasing the copper losses in slag, a small amount
of radioactive copper was introduced in a ladle of converter slag, before pouring the slag
into the reverberatory furnace. Slag samples were then obtained from the skimmed slag and
analyzed for radioactivity. The results are shown in the form of a dimensionless C-diagram
shown earlier in Fig. 20.23. We wish to represent the flow in the furnace by means of the
mixed model and calculate the values of the plug flow, perfect mixing, and dead volume
regions. The calculated average residence time of the slag in the furnace is 30 hours.

We start by using (20.4.3) to calculate the actual mean residence time of slag in the

furnace:
. Cimi +Cora + Carg + ...

T =
mean Ci+Cs+C5...

where C} is the dimensionless concentration in the exit stream at time 73, and so forth, as
obtained from the C-diagram of Fig. 20.23. Therefore, from (20.4.4) we have

=0.14,

Va
— =1-0.14 = 0.86.
v 1-0.1 0.86

Also, from (20.4.1) and Fig. 20.23, we obtain

v
=7, = 0.035.
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Finally, (20.4.5) yields the backmix flow volume in the furnace:

Vm__ Ve Vd_ _
V—l—V—F 1-0.035 - 0.86 = 0.105.

_ The reliability of the model may be checked by also evaluating V;,,/V' by the alternative
method of nsing the value of the peak concentration (see (20.4.6)):

V. Vin
= Cmax =9.3 . 37 =0.108,

which is in good agreement with the previous value of 0.105.
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APPENDIX A

Table A1l. Conversion of Various Units of Measurement to SI Units
(Adapted from ASTM Standard for Metric Practice, Publ. E380-86)

" To convert from:

[P T—

351

to: multiply by:

Acceleration :

fts? ms? 3.048 x 107"
Angle -

degree radian 1.745 x 107
Area

cm? m? 1.000 x 10°7*

hectare m’ 1.000 x 10*

acre m’ 4.047 x 10°

f* m? 9.290 x 107
Density or Concentration

gem™ kg m™ 1.000 x 10°

Ib £ _ kg m™ 1.602 x 10"
Diffusivity (mass, momentum, thermal) .

em? st m?s 1.000 x 107

f* ht m’s? 2.581 x 107
Electricity .

Faraday C {Coulomb) 9.649 x 10*
Energy (work)

Newton meter ] Joule) 1.000

calorie J 4,187

erg, g cm’ 5 ] 1.000 x 107

British thermal unit ] 1.055 x 10°

ft Ib force 1] 1.356

ft poundal ] 4214 x 1072
Energy Flux

cal s cm™ Wm™ 4.187 x 10°

BTU h ft™ Wm? 3.155
Force ]

g force gons? 9.807 x 10°

kg m 52 N (Newtor) 1.000

kg force N 9.807

dyne, g cm s N 1.000 x 107

Ib force N 4448

poundal N 1.383 x 1071

cont’d
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Heat Capacity
cal g™ °C™ Jkg? K7 4.187 x 10°
BTUb™ °F! Jkg' K1 4.187 x 10°
Heat Conductivity
cal s7 em™ *C? Wm'K? 4187 x 16
BTU L' £ “F WmlK! 1.731
Length
angstrom (A m 1.000 x 107®
micron m 1.000 x 107
centimeter m 1.000 x 107
foot m 3.048 x 107
inch m 2540 x 1072
mil m 2,540 x 107°
mile (US) m 1.609 x 10°
yard m 9,144 x 107
Mass
g kg 1.000 x 107°
gram mole kilomole 1.000 x 10°°
ounce (avoirdupois) kg 2.835 x 1072
ounce (troy) kg 3110 x 1072
- pound kg 4.536 x 107"
ton (metric) kg 1.000 x 1¢°
ton (US) kg 9.072 x 10?
ton (long, 2240 Ib) kg 1.016 x 10°
Mass Flow Rate (mass/unit time)
b ht kg s 1.260 x 107*
ton h™ (metric) kgs™ 2.778 x 107
ton h™! (US) kg s 2,520 x 107!
Power
Joule 5! W 1.000
volt ampere W 1.000
cal 57! w 4187
kilocalorie s - w 4187 x 10°
BTU h! w 2.931 x 107!
horsepower W 7.457 % 10
(550 ft Ib force s™
Pressure or Shear Stress
Newton m™ Pa (Pascal) 1.000
bar Pa 1.000 % 10°
atmosphere, standard Pa 1.013 x 10°
cm of mercury, 0°C Pa 1.333 x 10°
em of water, 4°C Pa 9.806 x 10!
Ib force ft2 Pa 4788 x 10
Ib force in™ Pa 6.895 x 10°

ey

ST T
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cont'd
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Temperature
degree Celsius
degree Fahrenheit
degree Fahrenheit
degree Rankin

Torque
dyne cm
Velocity
fts™t
km b
miles k™
Viscosity
centipoise
centistokes
poise
Ib ft* h?
Stokes
Volume
em®
liter
barrel (42 gallons)
£
gallon

ounce
quart

TK = TC +273.15
TC = (TF - 32)/1.8

Tx = (T; + 459.67)/1.8

Ty = Tp/18
1.000 x 1077

3.048 x 107!
2.778 x 107!
4470 x 107

1.000 x 107
1.000 x 10°¢
1.000 x 107!
4134 x 10
1.000 x 107*

1.000 x 1078
1.000 x 107
1590 x 107!
2832 %1072
3.785 x 107
2,957 x 107°
9.464 x 107
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Table A2. Important Physical Constants

Quantity Symbol Value Units
Universal gas constant R 1,987 cal mol™ K*
8.314 x 10° ] kmol? K -
8.205 x 10! cm® atm mol™ K
1.545 x 10° ft Ib,; Ib-mol™ R™?
Standard acceleration g 9.807 x 10° cm s
due to gravity 9.807 m s
3.217 x 10} - fts?
Avogadro’s number Ny 6.023 x 102 molecules mol™
Boltzmann'’s constant k © 1381 x 1072 JK?
Planck’s constant h 6.625 x 107 Is
Stefan-Boltzmann o 5.73 x 10°® Wm?K*
radiation constant 1.37 x 1072 cal s em? K
0.173 x 10°® - BTUK™ ft? R
Velocity of light ¢ 2.998 x 10% cm s
_ 2.998 x 10% - ms?
Melting point of H,O Top 273.15 . K
Ideal gas volume of 224 m’
1 kmol at 1 atm, 273.15 K
Faraday constant F 9.649 x 10* Coulomb

(mol equiv)™

jpprry, S ——— T

PP - — by
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NOMENCLATURE

a: chemical activity of a species (Chapter 18), —

a,: specific surface area per unit volume of reaction system, ™1

A: area (surface, interface, cross-section), L2

A, cross-sectional area of conduit, L2

Ap: cross-sectional area of particle, L?

A, surface or interface area available for reaction, L2

Bi: Biot number (Table 2.1), — '

: velocity of light, Lt~!

¢: dimensionless concentration, —

¢: molar concentration (density) of fluid, ML 3

c4: molar concentration of species 4, ML ™3

Cabr CA,s» €A,e: bulk, surface and equilibrium concentratioris of species A, ML ™3
Ta,: average concentration of species A across film at location z, ML ™3
ca, Ly logarithmic mean concentration of species A, ML ™3

C4: dimensionless drag coefficient, — _

Cp, Cy: specific heat at constant pressure and volume, respectively, -QM‘IT‘1
C,: molar heat capacity (Chaipter 18), QM~1T1 :
C,, C,: orifice, venturi coefficients (Chapter 8), — @ B
dp: bubble diameter, L

dp: hydraulic mean diameter (Chapter 8), L.

d;: jet diameter, L.

d,, d;: outside and inside diameters of pipe, L

dp: pipe dia.neter, particle diameter, L

D,: eddy diffusivity, L2t1

D.g: effective diffusivity of species A, 1.2t}

Dy o effective Knudsen diffusivity, L2t~?

Dap: diffusivity of species A in species B, L2t}

Df/Dt: substantial time derivative of function f (Chapter 5)

e: roughness of surface (Table 8.1), L

E,: activation energy (or temperature coefficient) of reaction, QM1

E4: temperature coefficient for diffusivity, QM1

E,: temperature coefficient for fluidity (1/viscosity), QM ™!

F', f": first and second differentials of function f

fic: friction factor, —

iy ]

355
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F, F,, Fy, F.: force vector and its components, MLt~2

Fy, Fy,: drag force, frictional force, MLt™2

F,: gravity force, MLt™2

Fi;: geometric view factor between two surfaces Ax and A; in an enclosure (Chapter 13),

F: Faraday number (Table A2)

F': dimensionless concentration (Chapter 20), —

Fo: Fourier number (Table 2.1), —

&, 9z 9y, §z: acceleration due to gravity vector and its components, Lt~2
G mass flux of fluid (= pu), ML~%t~1

G: Gibbs free energy (Chapter 18), QM™!

Gr: Grashof number (Table 2.1), — _

Gr’: concentration Grashof number (Table 2.1), —

h: heat transfer coefficient, QL. —?t~1T1

hoy: overall heat transfer coefficient, QL =2t~ 1T~

hpg: heat transfer coefficient between particle and gas, QL—2t~1T~!
h: Planck’s constant (Table A2, Chapter 13)

H: height of liquid level, height of vessel, L.

i, 7, k: unit vectors in the z, y, and z directions, respectively (Chapter 6), —
ja: mass transfer factor (Chapter 17), Lt~!

k: turbulent energy per unit mass of fluid (Chapter 7), L.%t=2

k: thermal conductivity of a material, QL ~1t~1T~!

k: Boltzmann's constant (Table A2, Chapter 13)

k — e: turbulence model (Chapter 7)

k., k.: friction loss coefficient for contraction or expansion (Chapter 8), —
k,: mass transfer coefficient, Lt~1

ka,s, kd,m: mass transfer coefficients through phases s and 7, Lt~1
kaig: combined diffusion coefficient (Chapter 19), Lt~!

k4,z: local mass transfer coefficient at location z, Lt~1

k.. overall rate coefficient, Lt™!

k.: chemical rate coefficient, heterogeneous reaction, Lt~2

k.: chemical rate coefficient, homogeneous reaction, t™1

k.: volumetric rate coefficient, quasi-homogeneous reaction, t~1
kro: chemical rate coefficient at reference temperature T, Lt
k.7: chemical rate coefficient at temperature 7', Lt~}

K.: equilibrium constant, —

K,: distribution coefficient between two phases (Chapter 15), —
K, viscosity modulus (Chapter 3}, —

Im: mixing length (Chapter 7}, L

L: characteristic length of flow system (Chapter 7), L

L: disfance between two points, length of vessel, L
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rh: mass flow rate, Mt™1 :

. ass of tracer injected (Chapter 20),

M: molecular weight, M

Ma: Mach number (Table 2.1), —

M;: molecular weight of species ¢, M

n: order of chemical reaction (Chapter 18), — -

ny: number of bubbles in the bath (Chapter 18), —

np: number of particles per unit volume of cloud (Chapter 13), L3
n4: number of moles of species 4, M

" fu4: number of moles of species A per unit time, Mt™?

N4, Ng: molar flux of diffusing species A and B, ML 2171
N ave: average value of molar flux of 4, ML~2t~!

N; mox: maximum molar flux of species 4, ML—%t~1

N*%: molar flux by diffusion and net bulk flow, ML—2¢~1
N’,: mass flux of species A, ML~2t™1

N .+ mass flux of species A in the z direction, ML ~2t~1
Nu: Nusselt number (Table 2.1), —

Nu,: average value of Nu at distance z from leading edge, —
Nu: average value of Nusselt number over a surface, —

p; : partial pressure of species i, ML ~1t~2

po: standard pressure of species ¢ (Chapter 18), ML~1t~2

P: pressure, ML™1t—2

P': fluctuating component of pressure, ML™1t=2 - / \}
P: time-averaged pressure, ML~ 1t—2 { W
il K LA

P,: critical pressure (Chapter 3), ML~ 1t~2

Pe: Peclet number'(Table 2.1), —

Pr: Prandtl number (Table 2.1}, —

g: heat flux in direction z, QL~2t!

Jeond» Jeonvs Grad: heat flux by conduction, convection, radiation, QL.—2¢t™?
gi,»: monochromatic radiant energy flux (Chapter 13), QL~2t1
qx,:: incident radiation on surface Az (Chapter 13), QL~2t™1

qr,0: radiosity of surface k (Chapter 13), QL~2t™!

g: rate of heat generation per unit volume of the material, QL ~3t™1
Q: rate of heat transfer, Qt~1

r: distance from center of cylinder, sphere, L

Ty: outer radius of boundary layer around sphere (Chapter 12), L
Ti, T inner and outer radivs of hollow cylinder, sphere, L

7p: radius of pipe, spherical particle, L

4: rate of homogeneous reaction of species 4, ML~3t™!

R: universal gas constant (Table A2), QM~1T"!
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Re: Reynolds number, —

Re,: particle Reynolds number, —

Re.: Reynolds number at distance z from entry point, —

Rm: ratio of mass of gas entrained to mass of cylinder (Chapter 6), —
R.: fractional degree of reaction, — "

S: entropy, QM~1T™!

Sc: Schmidt number (Table 2.1), —

Sh: Sherwood number (Table 2.1), —

Sh,: local Sherwood number at distance z from leading edge, —
{: time, t

tave: mean residence time of fluid in vessel (Chapter 20), t

t.: time interval, t _

ty: time for complete reaction, t

T temperature, T :

T, temperature of atmosphere, T

Tb: bulk temperature of fluid, T

T,: surface temperature, T

T¢: critical temperature (Chapter 3), T

Th1m: mean film temperature, T

T5: initial temperature, T

T4, Ty: temperature at y = 0 and y = Y, respectively, T

Tb: reference temperature, T

Tirans: temperature of transformation phenomenon (Chapter 18), T
Ty temperature of wall, T

U, Uz, Uy, % velocity vector and its components, Lt™1

Uave: average flow velocity, Lt™1

up: bulk or “free stream” velocity of fluid, Lt™!

uy: bubble velocity (Chapter 17), Lt~1

Umox: Maximum fluid velocity, Lt~!

u,: superficial velocity of fluid through vessel, Lt~*

up: relative velocity between particle and bulk velocity of fluid (Chapter 8), Lt~1
u,: ie., peripheral velocity (Chapter 17), radial velocity, Lt™?
u,: velocity of sound in the fluid, Lt™?

u,: terminal velocity of bubble or particle (Chapter 8), Lt~!

u*: velocity due to net bulk flow, Lt~!

7: average velocity of fluid, Lt~}

u!: fluctuating component of velocity, Lt~

ug: tangential velocity, Lt~}

»: volumetric flow rate, L3t~1

V = 1/p: specific volume of the gas (Chapter 9),L3 M~!
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V: volume, L3

Vyi: dead flow volume (Chapter 20), L3

Vim: backmix flow volume (Chapter 20), L3

Vp: plug flow volume (Chapter 20), L3

V;: reactor volume, L3 '

Va, Vp: diffusion volumes of molecules A and B (Chapter 14), L3M™1
W: width of plate, vessel, L

Wi:: work done by fluid to overcome friction, ML2t2

W.n: mechanical work done by fluid, ML?t~2

W{,: work done to overcome friction per unit mass of fluid, L?t~2
Wi, .1 contraction energy loss per unit mass of fluid, L2t2

Wi, .: expansion energy loss per unit mass of fluid, L?t~2

W! : mechanical work done per unit mass of fluid, L2t=2 - -

Wpg: radiant energy flux (Chapter 13), QL~%t1

W »: monochromatic emissive power of black body (Chapter 13), QL—3t~1
W;: monochromatic emissive power of non-black body (Chapter 13), QL ~3¢~!
z: distance from origin in & direction, L.

X a: mole fraction of species A in a mixture, —

Xa,0, X 4,1 mole fraction of species A at location y =0,y = L, -
Xap X4, mole fraction of A in bulk fluid and at surface, —

X a,La: logarithmic mean concentration of species A, —

X's: mass fraction of species A, —

y: distance from origin in direction y, L

Y: thickness of plate or wall, L.

z: distance from origin in direction z, L

Z, Zy, Zy: liquid depth, initial depth, depth at level I, L

Greek Symbols

a = k/pC,: thermal diffusivity of conducting medium, LZt™1

o: gas fraction in “plume” rising above point of injection (Chapter 7), —
o: total absorptivity (Chapter 13), —

o), : monochromatic absorptivity (Chapter 13}, —

ag,,: effective absorptivity of gas (Chapter 13), —

f: dimensionless length (Chapter 11), —

A: volume coefficient of thermal expansion, T~?

[': coefficient of density change of fluid with concentration, —

359

v = C,/Cy: ratio of heat capacity of gas at constant pressure to that at constant volume-

(Chapter 9), —
«~: activity coefficient in non-ideal solution (Chapter 18), —
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§: boundary layer thickness, L

§.: boundary layer thickness at location z, L

§*: displacement thickness of boundary layer, L

(Ac)pas: logarithmic mean molar concentration difference, ML ™3

Az finite element of distance, L

AG; ., AGY, AG .1 actual, equilibrivm, and relative Gibbs free energies of

species i, QM ™!
AG?: Gibbs free energy of chemical species ¢ at equilibrium at temperature 7" and standard
pressure py (Chapter 18), QM™!?

AH 2: heat of decomposition reaction at equilibrium, QM~1

AH$: heat of formation of compound at equilibrium, QM ™!

AH?: total enthalpy of the species at equilibrium, QM ™!

AH,..: heat of reaction, QM1

AH, uns: heat of transformation, QM1

AP: finite pressure difference, ML™t~2 ‘

AS;r, AS?,: total entropy of species i at its equilibrium state at T' and at reference
' temperature Ty, QM~1T-1

AT" finite temperature difference, T

(AT)par: logarithmic mean temperature difference, T

AY': finite element of thickness, L

Ag: emissivity correction factor for mixture of gases, —

Ar: finite difference of dimensionless time, —

&: energy parameter for interaction between molecules (Chapter 3), MLt~ ?molecule?

&: rate of -dissipation of turbulent energy (Chapter 7), L2t~3

€: total emissivity, —

g: porosity of solid body (Chapter 14), —

ec: emissivity of cloud of particles, —

g4t effective emissivity of gas, —

€p, £,: emissivity of particle, surface, —

€. monochromatic emissivity (Chapter 7), —

el effective emissivity of solid, — .

@: angle from reference plane on sphere or cylinder, in radians

@: dimensionless temperature (Chapter 11), —

0,»: dimensionless temperature at grid point m (Chapter 11), —

;.. dimensionless temperature at m after time interval A7 (Chapter 11), T

A wavelcngﬂl, L

Amaox: wavelength of maximum emission at temperature 7', L

p: molecular viscosity, ML~1t~1

e eddy viscosity, ML~1t?

Mmix: Viscosity of gas mixture, ML~}

o Viscosity at reference temperature T,, ML~ 1t~!
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4ip: turbulent viscosity, ML~1t—1

v: momentum diffusivity or kinematic viscosity, L2t~1

vy: turbulent momentum diffusivity, L2t~}

v: frequency of propagation (Chapter 13), ¢!

p: density of the fluid, ML 3

Db, Ps: density of fluid in bulk fluid and at surface, ML —3
pg: density of gas, ML™2 :

po: density of fluid at reference temperature T, ML ™%

pr: reflectivity of surface k (Chapter 13), —

px: monochromatic reflectivity of surface (Chapter 13), —
o: Stefan-Boltzmann radiation constant (Table A2, Chapter 13), QL~2t~1T—4
o?; statistical variance, —

o¢: collision diametér (Chapter 3), L

7: dimensionless time (Chapter 11), —

71 tortnosity {Chapter 14), —

T, shear stress at wall of conduit, ML~1t—2

Ty,=: shear stress at plane y due to flow in direction z, ML~t~2
T, »¢ turbulent component of shear stress 7y o, ML™1t=2
7,: transmittance at wavelength A (Chapter 13), —

¢: angle from reference plane, degrees

#(x,y, z): velocity potential (Chapter 6), L2t™1

1 stream function (Chapter 6), L2t~1

§2: degree of rotation of fluid element (Chapter 6), t™1

1, collision integral (Chapter 3), —

Wa, Wy, wy: angular velocity about the z, ¥, and z axes, t!
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A C
Absorption of gas, 246, 277 CaCO, decomposition, 225, 306
Absorptivity, monochromatic, 180 Carben combustion, 303

total, 183 C-diagrams, 334
Activation energy, diffusivity, 213 Cells-in series reactor, 344

chemical reaction, 300, 303 Channel flow, 32
Activity coefficient, 288, 291 Characteristic length, in fluid flow, 64
Additive resistances, heat transfer, 170 in radiation, 201

mass transfer, 274 Chemical rate coefficient, 280
Anemometer, hot-wire, 66 Chemical rate phenomena, 279
Argon degassing of steel, 315 Chemical reaction and diffusion, 225
Arrhenius-type plot, 301 Chemical reactors, 329
Axial mixing, 332 Chemical thermodynamics, 282

' Cloud of particles, chemical reaction, 317

B . radiation from, 203
Back-mixed flow, 329, 331 Collision integral, 18
Balance, differential energy, 145 Compressible flow problems, 98

overall mass, 73 Concentration, boundary layer, 249

overall mechanical energy, 75 units, 208

overall thermal energy, 171 Conduction, 105
Barin thermochemical data, 286 " differential equations, 123
Batch reactor, 329, 341 in composite mt;dia, 1112%

i ; in composite sphere,

gie:: iﬁﬁﬁgﬂ’;ﬁ in hongw cylinder, 117

in reacting sphere, 115
through composite wail, 119

Boiling point, 19 throogh plane wall, 111
Boltzmann's constant, 178, 354 unsteady state, 123

Boundary layer, 55 in cylinder, 126
concentration, 249
displacement thickness, 59
in forced convection, 152
in natural convection, 155

Black body, 177

in sphere, 126 -
solution, in graphical form, 132
by numerical technigues, 137

thermal, 152 of a particular form, 128
thickness of, 59 Conduits, non-circular, 87
velocity profile in, 55 Continuity equation, 37
Boussinesqg, concept, 68 Continuous flow reactor, 325, 343
approximation, 149 Continuous-stirred tank reactor, 329
Bubble, dispersed system, 315 _ Contraction coefficient, 81
frequency, 264 Convection, 106, 145
velocity, 263 differential equations, 145
Bulk velocity, 55 forced, 150, 152, 161
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natural, 150, 155, 167
Convective transport, 4
of momentum, 39 .
Convergent-divergent nozzle, 103
Copper converter, 349
Copper electrodeposition, 268
Countercumrent-flow, heat transfer, 173
mass transfer, 277
Creeping flow, 50
Critical pressure ratic, 104
Cylindrical coordinates, 42
D
Dead volume region, 333
Decarburization of tron, 230
Decomposition of N,O,, 296
Dehydrogenation of steel, 236
* Diffuse emitters, 180
Diffusion, 205
and chemical reacticn in film, 225
and heterogeneous reaction, 279
and homogeneous reaction, 279
boundary layer, 249
coefficient, 207, 211
differential equations, 233
in laminar film, 246
in multi-component systems, 218
in plate, 236
in semi-infinite medium, 238
in spheres and cylinders, 238
in stagnant film, 220, 260
in two-phase system, 241
layer, 261
net bulk flow, 216, 298
volumes of molecules, 212
- steady state, 218 -
through porous media, 222
velocity, 216, 234
Diffusive transport, 4
of momentum, 40
Diffusivity, effective, 222
activation energy, 213
effect of temperature, composition, 210
of binary gas mixtures, 213
units, 208
values, 211
Dimensional homogeneity, 7
Dimensionless numbers, table of, 10
Dimensions of physical systems, 7
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Discharge coefficient, 79
Discharge from ladles, 95
Dispersion model, 337
Distribution coefficient, 241
Drag coefficient, 10, 89
Drag force on sphere, 8%
Driving force, diffusion, 224

Eddy, diffusion model, 337
diffusivity, 337
mixing length, 65
viscosity, 68
Eiffective diffusivity, 224, 298
of H, in air for various media, 223
Electromagnetic radiation spectrum, 178
Ellingham diagram, 294
Emissive power, 177
Emissivity, 180, 183
of carbon dioxide, 201
of gaseous atmospheras, 199
of various surfaces, 186
of water vapor, 200
Electric furnace, conduction in, 143
Endothermic reactions, 284
Entrainment of gas in liquid stream, 60
Entropy of species, 285
Equation of continuity, for laminar flow, 37
for turbulent flow, 68
Equation of motion, for laminar
flow, 39, 43
for turbulent flow, 68
Equilibrum, chemical, 281
concentration, 280, 290
constant, 290
gas—solid, 296, 300, 318
Gibbs free energy, 285
liquid-liquid, 241, 275
pressure, 287
state, 286
Error functions, 128
Euler equation, 45
Exothermic reactions, 284
Expansion coefficient, 81

F

Falling velocity, 91
F-diagrams, 331
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Fick's first law, 208
Film model, 260
Film temperature, 161, 265
Flash reduction, 317
particle radiation, 203
Flash smelting, 318
Flow, between parallel plates, 31
in open channel, 32
in rectangular duct, 86
in reservoir, 52
laminar, 30
on inclined plane, 32
through cylindrical conduits, 34
through nozzle, 101
through orifice, 78
turbulent, 63
Fluid bed roaster, 333
Fluidity, 288
Flux, heat, momentum, heat, mass, 209
molar, 207
Forced convection of heat, 130
in liquid metals, 162, 172
over plate, 164
through pipes, 161
to spheres and cylinders, 166
Forced convection of mass, 245
in laminar flow, 246, 248
in turbulent flow, to plate, 272
to sphere, 267
to rotating cylinder, 273
Fourier number, 10, 133
Fourier's law of heat conduction, 108
Fractional degree of reaction, 309, 312
Friction factor, 10, 82
charts for pipe flow, 84, 85
for curved pipes, 88
Frissling correlation, 265
Fugacity, 287
Fuming of iron, 228

G

Gas absorption, 246, 277
Gas bubbles, mass transfer, 263
rising velocity, 263
Gas-injection refining, 315
Gas emissivity, correction factors, 200

INDEX

Gas-solid reaction, 296, 303, 320
controlling resistance in, 296
overall rate equation, 301

Geometric view factor, 187

Gibbs free energy, 285
actual and equilibrium, 287

Grashof number, 10, 161
concentration, 254, 259

Gray body, 183

Gurney-Lurie charts, 133

H

Hagen—Poiseuille equation, 36
Heat capacity, 283
Heat loss, from furnaces, 115, 120
from ladle, 130 -
from pipes, 121
from steel slab, 185
Heat of formation, 283
Heat of reaction, 283

‘Heat of transformation, 283

Heat transfer
addition of resistances, 170
and chemical reaction, 115, 306
by conduction, 109
by convection, 145
correlations, 159
introduction to, 105
by radiation, 177
fluid to particles, 167
in boundary layer, 152
Heat transfer coefficient, 158
correlations, 159
factors affecting, 159
for pipes and ducts, 161
for plates, 164, 167
for spheres and cylinders, 166
in natural convection, to plates, 167
to other geometries, 169
overall, 170
typical values, 160
Heterogeneous reactions, 280
Higbie model for mass transfer, 261
Homogeneous equations, 7
Homogeneous reactions, 280
Hottel, net radiation method, 195
emissivity of cloud of particles, 203
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HSC program of thermochemical data, 287,

291, 293

Ideal fluid behavior, 47
Interface, reaction, 242, 275
advance rate, 312
Iron decarburization, 230
Iron fume oxidation, 228
Iron oxide reduction, 313
Irrotational flow, 47
Iso-potential lines, 53

J

Jet, supersonic, 100

K

Kirchoff law, 180
Knudsen diffusion, 222
effective, 224
Knudsen equation for sublimation, 293

L

Ladle, discharge of, 95
heat loss from, 130
Langmuir equation, 229
Laplace, equation, 49
Leaching, 340
Leibnitz rule, 128
Length, characteristic
equivalent, pipe fittings, 94
in fluid flow, 64
in radiation, 201
Levenspiel number, 339
Limestone calcination, 306
Limiting current density, 268
Logarithmic mean concentration, 224
Logarithmic mean temperature, 174
LOTUS 123, heat conduction, 141
radiation matrix, 198

M

Mach number, 10, 102
Magnesium reduction, 290
Mass concentration, 208
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Mass density, 208
Mass diffusivity, 207

values, 211

Mass transfer, introduction to, 205

addition of resistances, 274

and chemical reaction, 252, 296
by convection, 246

by diffusion, 207

correlations, 264

in boundary layer, 248

in electrodeposition of copper, 268
in natural convection, 252

in slag~metal interaction, 316
to falling film, 246

to spheres, 265

Mass transfer coefficient, 257

analytical comrelations for, 258

for cylinder rotating in liquid, 273

in dissolution of metal sphere, 273

in film model, 260

in forced convection over plate, 248, 258,
272

in natural convection from vertical plate,
259, 268 :

in surface renewal model, 261

over plate, 258

to rising gas bubble, 263

to spherical particles, 265

Mechanical energy balance, 75, 93
Metal refining by gas injection, 315
Metric system of units, 8
Microscale/macroscale balances, 74
Mixed flow model, 347

Mixing length, 68

Molat, concentration, 209

flux, 207
volume, 212, 214

Mole fraction, 209
Momentum, ransport, 3

diffusivity, 15

Monochromatic, emissive power, 177

absorplivity, 180
emissivity, 180
reflectivity, 180

Motion, equation of, 39

of single particles through fluid, 89

T
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N

Natural convection of heat, 150, 155
to various shapes, 169
to vertical plate, 167
Natural convection of mass
in laminar boundary layer, 252
Navier—Stokes equations, 45
Net bulk flow due to diffusion, 216, 319
Net diffusion velocity, 216
Newton’s law
of conservation of energy, 29
of motion of particles, 91
of viscosity, 14
Nomenglature, 355
Normal stress, 43
Nozzle, convergent—divergent, 103-
Numerical techniques, 137
Nusselt number, 11, 161
for tubes, 163

0

Open hearth furnace, diffusivity, 345

Order of reaction, 280

Orifice plate meter, 78

QOverall balance, mass transfer, 277
thermal energy transfer, 171 ,

Overall heat transfer coefficient, 170

Overall mass transfer coefficient, 321

Overall material balance, 73

Overall momentum balance, 75
applications, 93

Overall rate coefficient, 282, 301, 322

Overall resistance to heat transfer, 171

Overall resistance to mass transfer, 275

Oxygen potential, 295

P

Partition coefficient, 317

Peclet number, 11, 162

Perfectly mixed reactor, 331
Physical constants, table, 354
Pigford equation, 248

Pipe fittings, equivalent length, 94
Pipe roughness, 83

Piston flow, 331

Pitot tube, 76

INDEX

Planck’s, radiation law, 177
constant, 177, 354

Plug flow reactor, 331

Plume velocity, 71

Porosity, 222, 299

Prandtl number, 11, 109
values for gases, 154
mixing length, 63

Pressure, critical, 104
drop in contraction, 80
drop in expansion, 80 :
drop in flow of compressible fluids, 98
drop through fittings, 94 '
drop through rectangular duct, 87

Pulse input tracer test, 333

R

Radiation, 107, 177
between gray-body surfaces, 194
between surface and gray gas, 199
diffuse, 180
for black-body surfaces, 177, 185
from clouds of particles, 203
monochromatic, 177, 180
through emitting media, 199
total, 182
Radiosity, 195
Ranz-Marshall correlation, 167, 265, 303
Rayleigh number, 11, 167
Reciprocity rule, 188
Recirculating velocity, 71
Reflectivity, 182
Residence time, 262, 281, 329
Reverberatory furnace flow, 349
Reversible reaction, 280
Reynolds, number, 10, 63
effect on rate of reaction, 314
stresses, 68 '
Rotary kiln, 308, 332
Rotational flow, 47
Roughness of materials, 83

S

Savard—Lee tuyere, 164
Schmidt nember, 11, 251
Selenium oxidation, 226
Semi-empirical correlations, 4
Shear stress, 13, 43
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Sherwood number, 11, 258
SI system of units, 8
Sonic velocity, 101
Specific surface area, 281
Specular emission, 180
Spherical coordinates, 42
Stagnant film model, 260
Steelmaking operation, 106
Stefan—Boltzmann, law, 179
radiation constant, 178, 354
Steinberger-Treybal correlation, 267
Step input tracer test, 330
Stokes law, 90
Stream function, 48
Streamlines, in gas-injected liquids, 49, 51
around a sphere, 54
flow apainst a surface, 54
Substantial time dedvative, 39
Supersonic jet, 100
Surface renewal model, 261
for bubbles rising in liquid, 262

T

Tellurium precipitation, 340
Terminal falling velocity, 91
Thermal boundary layer, 152
Thermal conductivity, definition, 108
isotropic, 108
of gases, 110
of metals, 110, 112
of nonmetals, 110, 112
units, 109
Thermal diffusivity, 109
Thermodynamics, chemical, 282
first law of, 283
second law of, 285
third law, 286
Time~space grid, 139
Tortuosity, 299
Total radiation properties, 182
Tracer tests, 330, 333
Trnsport phenomena, 1
coupling, 2
analogies, 3
Transference number, 268
Transport rate of momentum, 30
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Turbulence, intensity, 68
isotropic, 69
model, 69

Tuyere, gas shielded, 164

U

Unit equation, 8

Units of measurement, 8
conversion table, 351

Unsteady conduction, 123
for cylinders, 125,
for spheres, 125

v

Vaporization, rate, 228
of MgO, 292
Velocity, distribution in turbulent flow, 66
fluctuating component, 67
of light, 177
potential, 51
profile, in tube, 34, 66
in open channel, 32
in natural convection, 155-157
sonic, 100
superficial, 277
Venturi tube, 77
View factors
algebra, 189
calculation, 189
definition, 187
formulae, 190
plot, 191
Viscosity, definition, 14
eddy, 68
effect of temperature, 17, 19, 22
kinematic, 15
of gases, 19
of metals, 23
of slags, 26, 27
of various fluids, 16, 19, 21
units, 15 _
Volumetric rate coefficient, 282
Vorticity, 47

W

‘Wavelength, 177
Wien’s law, 179
Wilke correlation, 267
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Z

Zinc oxide reduction, 317
from slag, 291
in flash reactor, 317
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