LIMITS AND CHANCES IN FLUE-GAS CLEANING - INTERNATIONAL PERSPECTIVE"

DIETER O. REIMANN, DIRECTOR DR.-ING. MHKW BAMBERG, FRG

General

Every thermal conversion of gaseous, liquid, and solid fuels or refuse-derived fuels creates emissions. The amount of these emissions depends on the pollutants in the fuel, on its homogeneity and its breakability down, as well as on the chemical, physical, and mechanical conditions during the combustion process. Combustion-dependent emissions like carbon monoxide or organic carbon can be kept at very low levels by using optimized combustion technique [1]. Other organic or inorganic pollutants, which are released during the combustion process, must be detained by appropriate flue-gas cleaning systems to the greatest possible extent.

These emissions, which are reduced by secondary measures, depend mainly on the content of the pollutants in the fuel. Solid fuels cause higher emission freights than gaseous or liquid fuels, due to their higher demand on oxygen in the combustion air.

Element	German UBA	Mean values German Babcock	Mean values	EAWAG	Mean values Bamberg (Reimann	Range of results
	(FRG1990)	(Horch 1987)	Mönch 1987)	(CH 1982)	1987)	g/Mg
Chlorine (Cl)	3000-8000	7000	6900	7000	7500	6900-8000
Fluorine (F)	.10-50	200	140		100	100-200
Sulphur (S)	650-5000	5000	2700	5000	the second at	2700-5000
Zine (Zn)	5000	1000	2000	1200-2000	1900	1000-2000
Cadmium (Cd)	2,0-50	10	8,7	3,0-15	10	3,0-15
Lead (Ph)	den international	800	430	500-1200	450	430-1200
Copper (Cu)	- 11	400	200	240-600	500	200-600
Chromlum (Cr)	er for the section	CHE0730-001	1		250	12501
Mercury (Hg)	0,3-14	4	2	5	4	2,0-5,0
Nickel (NI)		Santo Transa	Contraction of the	· · · ·	80	/80/
Arsenic (As)	AND DE LE CONTRACTOR	nada Golo So	bound and	6.0 8 0 L 0 V	4	141
		an ever and decision				All data in aMa refu

TABLE 1Comparison of Refuse Pollutants and Heavy Metalsfrom Various Plants and Range of Results [2]

Current Situation

The thermal treatment of household waste, household-like trade refuse, sewage sludge, and hazardous waste in Germany currently amounts to 10.5 million metric tons per year tantamount to 30% of these kinds of refuse. In 1992, about 9.5 million tons of refuse-derived fuel have been thermally converted in the existing 49 municipal waste incinerators and in one pyrolysis plant, 0.7 million tons in 27 hazardous waste incinerators, and 0.3 million tons sewage sludge with 30% dry solid (DS) content in 15 sewage sludge incinerators [3].

The number of landfills is dropping drastically because of consumption of space. New landfills can hardly be opened because people do not accept them [3], and the new "TA-Siedlungsabfall" (Technical Guideline for Municipal Waste) will exclude the deposition of untreated waste to a large degree [4]. Therefore, after avoidance of waste and recycling [5], the thermal treatment of the remaining waste will strongly gain importance. The existing incineration capacity will be insufficient and must be increased by 7-10 million metric tons per year, according to cautious estimates and in view of the additional annual 10-15 million tons from the new German states [6].

In the public opinion there exist reservations and disapproval not only against any kind of waste treatment facilities, particularly against thermal waste treatment, but also against combustion plants for solid primary fuels like brown coal.

The opposition is based mainly on the potential release of gaseous substances or microparticals in untreated raw gas. These pollutants are partly highly toxic organic compounds which are released during the thermal treatment or whose formation is just suspected, respectively. Among these substances are chlorinated and brominated dioxins and furanes as organic prime pollutant substance as well as heavy metals like mercury, thallium, and cadmium which also show highly toxic effects.

Therefore, the ultimate goal of advanced flue-gas cleaning technologies can be seen as to realize ecologically necessary minimizations of emissions in the best possible way which is oriented towards the toxicology of the released pollutants. The translation of this ecological challenge has to be guided by the technical feasibility and must stay within the bounds of the economically justifiable.

Assessment and evaluation of forward-looking flue-gas cleaning technologies is not only limited to the process technology, but must also consider the type of generated residues and used additives. So far as technologically possible for the chemical absorption of essential pollutants, precedence should be given to naturally occurring compounds like limestone in contrast to artificially generated chemicals like caustic soda and ammonia.

Mercury, which evaporates completely during combustion and enters the gas phase, can hardly be removed by conventional treatment and therefore must be adsorbed on particulates or activated carbon or coke, respectively. Better results are obtained by natural condensation with scrubber liquids and subsequent precipitation with environmentally neutral precipitating agents like trimercapto-s-triazine (TMT 15) [7].

Mercury can be considered as the prime agent amougst heavy metals. If its concentration in the flue-gas can be lowered to less than the threshold limit of 0.05 mg/m³ flue-gas, as a rule all other heavy metal limits are usually met.

Emission Limits

In order to improve the acceptance of thermal combustion plants for solid fuels and refuse, permitted emission limits are continuously suited to the state, often even to an anticipated state of the art.

				LIMITS TOP SO	lid Fuels			
omiceion	dimonolog							
		daily mea	A. Invalues	half-hour r	A. neanvalues			state of the art
		coal	refuse	coal	refuse	coal	refuse	refuse
		13.	17.	13.	17.	13.	17.	daily value
		BImSchV	BImSchV	BImSchV	BImSchV	BImSchV	BImSchV	repect.
		>50 MW		>50 MW	1.1	>50 MW		sep. measur.
O2-reference	Vol%	7* (6,5)**	11° (3)°°	7 (6,5)	11 (3)	7 (6,5)	11 (3)	11 (3)
dust	mg/m3	50	10	100	30			<3
co	mg/m3	250	50	500	100			<20
S02	mg/m3	2000	50	4000	200			<20
NOX	mg/m3	800 *	200	1600 *	400			<70
		1800 ***	の時間で	3600 ***	1410		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
HCI	mg/m3	200	10	400	30	12 12 12 12 12 12 12 12 12 12 12 12 12 1		<3
		(<300 MW)		(<300 MW)				
H	mg/m3	30	-	60	4			<0,3
		(<300 MW)		(<300 MW)			Salt and	
Org. C	mg/m3	•	10	,	20			<4
Hg	mg/m3		10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0,05	<0,02
Cd+TI	mg/m3						0,05	<0,01
heavy metals	s mg/m3					-	0,5	<0,1
dioxin-TE	ng/m3				10	-	0,1	<0,1
		1000	北京の市					
* grate and fluic	dized bed firing		国語教授系	° grate firing	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			ななないのの
** pulverized co	al firing with dry	/ ash remova		°° pyrolyses	がいない			ないないので
*** pulverized c	oal firing with lic	quid ash remo	oval					
all statements r	efer to standard	conditions (273 K, 1013	mbar, corresp	onding O2 re	ference)		
formula for oxyc	gen reference:							
			ala d) oni oni i d	Em: measure	d emission			
EB = ((21 - 0B)) / (21-Om)) . En	L	mit	EB: emission	, referred to tl	he oxygen refu	erence	0 V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
				Om: measure	ed oxygen cor	itent		
				OB: correspo	nding O2 refe	erence		

Beside the emission limits of the Decree for Large Combustion Plants with capacities over 50 Megawatts [8] which dates back to 1983, table 2 shows the permissible emission limits for the combustion of waste according to the latest update of the German Federal Air Quality Control Act [9]. The maximum allowable daily mean values as well as the average half-hour values are given. These values have to be established through continuous monitoring.

Emission limits for the decisive heavy metals and the dioxin-TE value are stated as one-time readings.

Some emission limits, which have already been established for the combustion of waste, do not exist for the combustion of coal in plants greater than 50 Megawatts. This includes heavy metals, organic carbon, and the dioxin-TE value, although some of these compounds are among the emitted substances from these plants. As a rule, all coal-fired power plants in Germany, which are equipped with up-to-date wet desulfurization systems, are also set up for the removal of mercury. In order to be actually able to lower the mercury concentration from an initial level of 0.2-0.25 mg/l [10] to the required level of 0.05 mg/l wastewater (sometimes 0.01), TMT 15 (trimercapto-s-triazine) is used [11].

The last column of table 2 shows the expected, technically feasible minimum emission or threshold limits, according to the anticipated state of the art.

The figures in table 2 cannot be compared directly, because they are based on different oxygen levels. In addition, the specific combustion air demand for the treatment of refuse-derived fuel is 1.5-2 times higher than the demand for the combustion of coal.

At the moment, this results in a 3-10 times higher specific emission rate from coal-fired plants compared with the incineration of refuse.

On this examination, the annual total fuel quantity, which is added during combustion or incineration, has to be taken into consideration. This amounts to 220-270 million metric tons per year with hard coal and brown coal and is about 20-25 times higher than for the treatment of refuse which is 10.5 million tons per year.

TABLE 3Comparison of Permissible Emissions According to SomeInternational Regulations for Waste-to-Energy Plants [12]

	E	EC	EEC	GERMA	NY	NET	HERLANDS	AUSTRIA		SWITZERLAND
Kind of regulation	Dire	ective	Directives	17. Decree to	BlmSchG	0	Directive	Decree LRV.	К	Decree LRV
	Pro	posal	89/369			"Ind	cineration*			
and the second s			89/429							
Kind of refuse	Hazard	ous waste	Mun. waste	All waste inc	inerations	Haz.	/Mun. waste	Haz./Mun. was	ste	Haz./Mun. waste
			0.5					(Incineration with I	boiler)	
Kind of plants	New an	d existing	New and existing	New and	existing	New a	and existing	New		New and existing
	Prop	osal 92	1. Dec. 1990	1. Dec.	1990	15.	Aug 1989	13. Januray 19	989	1. Feb 1992
Realisation up to	1		1996	(1994-	-1996)	(19	993-1997)			(1997-2002)
N° Pollutant										
1 Total dust	5	10	30	10	30	1.16	5	15		10
2 TOC	5	10	20	10	20		10	50		20
3 HCI	5	10	50	10	60	1.9.1	10	10		20
4 HF	1	2	2	1	4		1	0,7		2
5 SO2	25	50	300	50	200		40	50		50
6 NOx				200	400	-	70	100		80
7 Mercury		0,05	0,2		0,05		0,05	0,05 (0,1)	0,1
8 Cadmium	(incl.Tl)	0,05	0,2	(Incl.TI)	0,05		0,05	0,05		0,1
9 Other heavy	Sum	0,5	Pb+Cr+Cu+Mn 5	Sum	0,5	Sum	1	Pb + Zn + Cr 2		Pb + Zn 1
			NI + As 2					As + Co + NI 0,	,5	
10 PCDD/F dloxin-Te ng/m3	0,1 (target	2		0,1			0,1	0,1		
Cont. measure. #1-6	24 h	0,5 h	1 h	24 h	0,5 h	1	1 h	0,5 h		1 h
Measurement #7-9		0,5 - 4 h	(with adaptation)		0,5-2 h	(with e	exceptions)	generally		(with adaptations)
Duration #10		6-16 h		A 0	6-16 h			3-10 h		

Probably in the future, the emission limits for coal-fired power plants and those for thermal refuse treatment will be at the same low level, simply because of environmental reasons and the principle of equality.

Some of the emissions, e.g. those of heavy metals and the dioxin-TE value, can probably be kept without any additional flue-gas cleaning, as long as monofuels are combusted. This doesn't apply to mercury, which can be detected in critical concentrations in the scrubber water of coal fired power plants, coming out of the raw gas [10].

The chemical and physical processes during the combustion of coal or the incineration of refuse are very similar, and the generated emissions mainly depend on the content of the fuel. Therefore, similar techniques can be used for flue-gas cleaning. However, the combustion of high sulfur coal (sulfur dioxide emissions) or coal dust burning with liquid slag removal with its high NO_x -levels can make it difficult to stay within the emission limits.

Flowsheet of the MWC Bamberg and distribution of mercury

FIGURE 1 Schematic of Refuse Incineration MWC Bamberg (FRG) with Specific Loads per Mg of Refuse

Figure 1 shows an up-to-date thermal refuse treatment including the mass-balances.

FIGURE 2 Distribution of Mercury Depending on Temperature and Flue-gas Cleaning Process

Figure 2 shows the distribution of mercury depending on the temperature of the fluegas and the chosen single steps in the flue-gas cleaning process with dust removal and wet scrubbing. The distribution is similar for hydrogen chloride and sulfur dioxide.

Purpose and Function of Flue-gas Cleaning

Up-to-date flue-gas cleaning systems usually consist of several procedural steps which have to be assigned differently. The functions of flue-gas cleaning can be classified as follows:

- * dust removal (e.g. cyclon, ESP, fabric filter)
- * separation of acidic pollutants like HCl, HF, HJ, SO₂ with simultaneous separation of volatile heavy metals like Hg, TI, Cd and semi-metals (wet-scrubber, semidry or dry systems
- * NO_x reduction (DeNO_x) (e.g. SNCR, SCR)
- minimization of organic pollutants like C_{org}, dioxins, furanes, PAH, PCB (e.g. catalyst, activated coke/carbon injection or filter, oxidation methods)

In order to stay within emission limits during the combustion of fuels or refuse, the systems are used in various combinations due to their different capabilities.

Dust Removal

Due to the composition of the fuels and the type of the firing process, very different types of dust are formed - quantitatively and qualitatively. These dusts do not only contain mineral ingredients, but also residual carbon, light fraction, inorganic and organic pollutants as well as heavy metals.

The known processes are differently well suited to achieve the desired degree of dust removal [13]. Since one-stage dust removal is often not sufficient enough, combined multistage separation systems are chosen with increased frequency. Not only finest particles can be separated with these systems, but also different dust fractions and special qualities can be obtained.

Figure 5 shows one of these multistage, forward-looking varieties for dust removal which is integrated with the other flue-gas cleaning steps in different ways. Finely ground and dust-forming additives are added with increased frequency to achieve efficient cleaning of the flue-gas. These additives are particularly alkaline earth metal compounds like calcium oxide, calcium hydroxide, calcium carbonate, and the corresponding magnesium compounds.Systems for dust removal must not only be suited for the separation of fuel-dependent dust, but also for the removal of these products.

This kind of view is very important, if acidic pollutants shall be removed from the flue-gas using dry or semidry processes, or if lignite coke or activated carbon are used for the reduction of dioxins and the final cleaning of the flue-gas. In most cases, the laden residues have to be declared as hazardous waste and must be disposed of accordingly.

If equipment has to be chosen which utilizes the activated carbon/lime injection in front of a fabric filter for dust removal, these mixtures which are based on lime are of great importance.

Separation of Acidic Pollutants and Volatile Heavy Metals with Different Processes

In principle, the processes which are used for the removal of acidic pollutants like HCI, HF and SO₂, can be divided into wet, semidry, and dry processes.

TABLE 4

Number and Distribution of the Prime Flue-gas Cleaning Systems - Wet, SemIdry, Dry - at the Waste Incineration Plants in the FRG

METHOD	NU	MRED	THROUG	HPUT of IN	CINERATION	PLANIS
of FLUE GAS CLEANING	INCI	of NERATION ANTS	TOTAL		SINGLI RANGE	E PLANT AVERAGE
SYSTEM	n	%	10 ³ Mgxa ⁻¹	%	10 ³ Mgx(a	axPLANT) ⁻¹
WET SYSTEM with or without wastwater	27	55	5.342	57	60 - 592	198
effluent SEMIDRY						
SYSTEM	14	28	2.748	29	62 - 386	196
DRY SYSTEM	8	17	1.352	14	25 - 400	169
TOTAL	40	100	0 442	100	in the second	

(STATUS 1992)

FIGURE 3

Figure 3 shows the different technologies which are used for the removal of acidic pollutants.

Wet Processes

The flue-gases which have usually been freed of dust and have a temperature of <300°C (<570°F), are quenched with water and cooled down below the dewpoint temperature, which is, depending on the acid content, between 60°C and 70°C (140-160°F). The quencher precedes the first wet scrubber which is operated with water at low pH. It removes mainly HCI, HF, HJ, fine particals, and volatile heavy metals, especially mercury.

The effluent is drained from the scrubber loop and neutralized, e.g. with slaked lime or quicklime, which precipitates most of the heavy metals as hydroxides with the exception of mercury.

Mercury is dissolved in the scrubber water as a chlorocomplex which can be removed only with sulfur containing agents [11,14].

Only those precipitating agents will be used in the future which are ecologically neutral during production, easy in application, not critical in case of overdosage, and which do not show detrimental effects in the long run. This set of requirements is only met by the sodium salt of Trimercapto-s-triazine (TMT). None of the other mercury precipitating agents like sodium sulfide, thioacetamide, dithiocarbamates, and polythiocarbonates, which are nevertheless in use today, is a patch on TMT. The TMT 15 demand is about 100-200 ml/m³ treated wastewater due to the concentration of mercury [7].

If sodium sulfate is present, it makes sometimes sense to produce calcium sulfate (gypsum) by adding calcium to this solution. With lime in a wet process a very low stoichiometry λ =1.02-1.08, on the average λ =1.05 is sufficient [13], in order to separate the acidic pollutants SO₂, HCL, and HF. About 8-10 kg hydrated lime per metric ton of refuse are needed. This is true for common compositions of raw gas with about 1000 mg HCl/m³, 15 mg HF/m³, and 500 mg SO₂/m³ [15].

As a rule, the wastewater from this scrubber must be treated with TMT 15 to meet the limited concentration on residual mercury in the effluent.

Caustic soda or limestone are added to the second scrubber which runs at neutral pH at 60-70°C (140-160°F). Here, mainly sulfur dioxide, residual emissions, and residual mercury are captured. The water in this scrubber is a sodium sulfate or calcium sulfate (gypsum) solution.

If the purified, salt-containing wastewater from the flue-gas cleaning may not be discharged, it is obvious to use internal or external evaporation. This is done best by backflow of the wastewater into a spray absorber which should be installed between pre-removal of dust and an additional, downstream dust removal facility in front of the first wet scrubber. Usable residues like salts and hydrochloric acid or gypsum can be obtained by external evaporation.

The following figure 4 shows on the right side the produceable residues of wet flue-gas

cleaning with the corresponding procedural steps. Wet flue-gas cleaning generates the smallest, undiluted, specific residue quantities.

Semidry Processes

The usually dedusted flue-gas with a temperature of 300°C is cooled down to 140-160°C through the injection of a lime suspension. Since the contact and the transition of the alkaline reagent to the pollutant is inhomogeneous and incomplete, the reagent must be provided in relatively high excess. In this case, the reactions in this technology need a stoichiometry of λ =1.3-2.6, on the average λ =1.8.

The temperature of the flue-gas must not be lowered under 140°C in order to be able to separate the salt/lime mixture in the form of dust and without encrustations in the subsequent dust removal facility.

Often, the semidry process is operated without preseparation of dust, which means that dust and acidic pollutants are separated at the same time and therefore as a mixture. The capture of heavy metals, especially mercury, is limited because the flue-gas temperature >140°C only allows partial condensation. The specific residual quantities are up to 50% higher than with the wet process.

Encrustations and sediments in the spray absorber can have a negative effect on this process which is why in some places the dry process is used.

Dry Process

The dry process differs from the semidry process in the way that dry alkaline products are added instead of alkaline suspensions. In order to improve the reaction rate between the acidic flue-gas components and the additives, the flue-gas is usually cooled down with water to 140-160°C first. Due to the saturation and conditioning with water vapor, the extremely high stoichiometry demand can be lowered from in some places λ = 3-4 to λ = 1.8-3.0, on average λ =2.5.

Like the semidry process, the lime/salt particles are separated in a dust removal unit by filtration. With regard to the separation of heavy metals, the statements made earlier in the semidry section are also valid here. However, this technology allows to achieve remarkable adsorption of mercury and organic pollutants by additioning activated carbon/lignite coke.

The adsorptive capacity, however, is strongly depending on the acidic components in the flue-gas.

Compared to the wet process and the semidry process, significantly higher amounts of residues are formed in this process.

Comparison of the 3 Processes

If the three processes which were just described, are compared regarding their ability to remove acidic components from the flue-gas, the wet flue-gas cleaning system turns out to be the most efficient process due to its ability to capture acidic ingredients and volatile heavy metals at the same time. In addition, it generates usable residues, and the demand on additives for the absorption of acidic pollutants is very low because of its required stoichiometry of $\lambda = 1.05$.

Since capital investment, demand on space, and the complexity of the process are lower for the dry process and to some extent also for the semidry process, these technologies are also in use. The simpler technology, however, generates hardly usable products and demands more of the additives. In order to achieve sufficient removal of the acidic pollutants, the necessary high excess of stoichiometry requires 80% to 150% more additives like lime, and the separated products are pollutid mixtures and by lime diluted residues whitch can hardly be used.

The more the threshold limit for acidic gases are lowered, the more difficult it gets to meet these limits, even with drastic overdosage of additives. Whether the dry and the semidry process can meet future threshold limits for heavy metals, even combined with activated carbon injection or lignite coke addition, is uncertain. The specifically high quantities of residual products cannot be recycled so far. This is in contradiction with recycling efforts.

Table of Dry / Semidry / Wet Processes for the Removal of Acidic Pollutants as well as Potential Residues

FIGURE 4

There are some efforts under way in the Federal Republic of Germany to retrofit some of the existing plants, which are operated with dry flue-gas cleaning systems, with wet scrubbers. Switzerland, for example, has recently retrofitted the Johann-Stausser Facility in Zurich. Today, most of the 33 Swiss MWC are equipped with wet scrubbers.

NO_x Reduction

 NO_x emissions can be diminished below the current German threshold limit of 200 mg/m³ with various processes. Through optimized firing process and recirculation of the flue gases into the combustion chamber, an average NO_x level of 300-500 mg/m³ can already be kept.

Should lower values, e.g. <200 mg/m³ be required, wet-oxidation are ruled out due to the high expenditure on the means of chemical auxiliaries and the hardly sufficient separation efficiency.

The non-catalytic NO_x process (SNCR process) with NH_3 injection into a temperature window of 800-950°C presents itself as inexpensive solution. With this simple technology, NO_x reduction of 40-80%, 50% on average, can be achieved. If very low emission levels (<100 mg/m³) shall be attained, this can be done with excessive dosage of NH_3 , but this is accompanied by a very high slip of ammonia. This can lead to a change in color of the flue-gas, and the smell of the residues can be a real nuisance. In addition, corrosion cannot be excluded.

If a wet scrubber is used after the SNCR process, the NH_3 can be stripped from the wastewater and fed back into the system. In this simple way, these problems by NH_3 overdosage can be solved. This technology guarantees the lowest demand on ammonia, too.

Alternatively, urea or liquid manure from animal farms can be used, but the liquid manure first requires preparation. Through the addition of other chemicals, e.g. methanol, the window of reaction temperature, which is required for efficient NO_x control can be expanded to 600-1100°C.

The catalytic process (SCR process), which uses catalysts and the addition of NH_3 at a temperature range of 250-350°C, has been proven to be very worth while. It is possible to surely reach a degree of NO_x removal of 70-80% which means that NO_x limits below 70 mg/m³ can be obtained. Up to date types of catalysts have proven their efficiency not only in coal-fired power plants, but also in refuse incineration in the longer term.

Processes, which use activated carbon or lignite coke in place of catalysts, are also suited. In this case, the catalysts are replaced by filters made of activated carbon or lignite coke, respectively. As with all other technologies mentioned before, NO_x is reduced through the addition of ammonia. The degree of removal is greater than 70%.

Activated carbon/lignite coke filters have the big advantage of removing traces of acidic pollutants, organic components, and traces of heavy metals like mercury all at the same time.

Compared with the catalytic process, the use of activated carbon/lignite coke offers the advantage of significantly lower reaction temperatures, which must be kept below 100°C as a rule. The superficial gas velocity of the flue-gas in the filter is limited to 0.1-0.2 m/s m², which calls for disadvantageously large filter areas. Extensive safety criteria have to be observed to avoid hot spots and self-ignition of the activated carbon/lignite coke.

Disposal of the laden coke-filter can be a problem. If activated carbon/lignite coke, which is laden with volatile heavy metals (Hg), shall be incinerated in the same plant, a wet scrubber with the corresponding wastewater treatment must be installed as a mercury trap.

Other technologies, e.g. the addition of soda ash for simultaneous removal of SO_2 and NO_x , or wet scrubbers with electrolytic conversion are under development.

The SNCR process is usually efficient enough to achieve residual NO_x levels below 200 mg/m. If regulations require threshold limits below 100 or even below 70 mg/m³, only the catalytic (SCR) process or the activated carbon/lignite coke technology will be taken into consideration. Ammonia or similar additives are used as reagents.

Minimization of Organic Pollutants (Particularly Halogenated Dioxins and Furanes).

Table 5 shows the technologies for the minimization of the dioxin-TE-content which are in use today.

Method	Treatment point	Temp.	TE	Advantages	Disadvantages	Comments
		range	dioxin			
		°C	ng/m3	La most entiner	Belgoil to Retu	Viewilsmeth
Preventative	Exclusion, during collec-	11.	?	Theoretically no	None	Practically impossible to
measures	tion of waste ingredients			additional process		realize with residual waste
	which lead to dioxin forma-		1000	required	[3] 出版的 (10,000) (10,000)	since no absolute exclusion
	tion			CONTRACTOR DE	a at holiophyle	of dioxin components possible
Primary	Furnance and after-burning	>850	<0.1	Thermal destruction	Consequent stack gas	Reliable method for destroy-
measures	zone			of org. pollutants;	cooling - resynthesis,	org. pollutants even in re-
	NOT ON THE OTHER PROPERTY.	19VISTS	2 2921	scarcely any dioxin-	further removal of	sidues from stack gas treat-
				containing residues;	dioxin required	ment
				side effect with	Web-Ubs to Built	a ennerequier
Oleo Stor		10 million		good insulation	Mita eenneb a r	to succh read
Stack gas	Upstream of inside or	>400	<1	Low-dioxin residues;	Side effects of inhibi-	Adequate only in combina-
treatment	downstream of the boiler			residue recycling	tors have to be studied.	tions of further downstream
>400 °C	with high temp. dust re-		1961	to furnace for	material aspects, incrus-	dioxindegrading measures
	moval or inhibitors			detoxification	tation, costs, safety risks	
Stack gas	Between boiler and stack	<400	<1	Low-dioxin residues	Reduced energy removal	Uniform abrupt quenching
treatment	gas treatment quenching	1 9/100		in the case of down-	risk of incrustation/	difficult;
<400 -	process; catalystic oxi-	1.2181		stream dust removal;	corrosion, large space	
>200 °C	dation after the stack gas	>200	>0.1	dioxin-free residues	requirement, reheating	useful only in combination
	treatment				of stack gas	with SCR NOx
Stack gas	Substantial dust removal	<100	0.1	Ideal final tre tment	Active coke problems,	Combination of multistage
treatment	<5 mg/m3, stack gas scrub-			as control filter,	such as spontaneous	scrubber with additive or
<200 °C	bing, possibly downstream			hardly any residues	ignition, costs, re-	downstream fabric filter and
	active coke filter in fixed			and low active coke	sidues and disposal,	active coke flight stream
Tibes en a	bed or flight stream process;			requirement;	high space requirement	process suitable for minimum
	dry/semidry process; A-coke	>140	0.1	can be used with	with fixed bed filter,	total emissions
	injection+ fabric filter			fabric filter with	unreliable process	
				little expense		(D. O. Reimann)

TABLE 5 Overview of Dioxin-TE Minimization Methods (as of 1992/93)

In comparison to coal firing, higher dioxin values are detected in the emissions of refuse incinerators. The threshold limit for the Toxic Equivalent (TE) of dioxin is laid down at 0.1 ng/m³. As one can see from table 5, combustion technology or dust removal from the hot gas as well as quenching are not efficient enough. Though the application of these processes results in a reduction of today's dioxin emissions of 1-5 ng/m³, the limitation on 0.1ng TE/m³ by far cannot be achieved [16].

At the moment, only the catalytic oxidation process, the process using activated carbon/ lignite coke filter, and the activated carbon injection with lignite coke or with a mixture of lime and activated carbon/lignite coke are suitable systems for the dioxin-TE-reduction. First trials are carried out with the application of hydrogen peroxide in oxidative processes.

Organic pollutants can be oxidized on a catalyst which is particularly true for halogenated dioxins and furanes. Traces of heavy metals and acidic pollutants as well as SO_3 can poison the catalyst and shorten its lifetime.

Very good results can be obtained with activated carbon/lignite coke filter, because they do not only capture organic ingredients through adsorption, but also other final emissions. Problems can arise, in spite of extensive self-control, through hot spots in the filter. In addition, the disposal of the bulky filters which are laden with hazardous materials might not be easy.

It seems that the activated carbon injection, which is simpler, therefore less expensive than other processes and safe to operate, will gain acceptance. In front of a fabric filter, additives are injected into the flue-gas, which consist either of pure activated carbon or a mixture of activated carbon or lignite coke. Organic pollutants and final emissions are captured "during flight" or in the formed precoat layer on the filter surface. The dust is recirculated several times, and only small amounts of dust, laden with pollutants, are removed. The big advantage of this process is that the share of activated carbon/lignite coke in this mixture can be reduced to less than 3% without adverse effects on its capability to remove pollutants from the flue-gas. The main part of the mixture usually consists of lime, which reduces the risk of spontaneous combustion of the precoat layer due to its content of activated carbon/lignite coke to almost zero. The use of fabric filters guarantees final dust removal and cleaning of the total flue gases and takes on the function of a so called emergency or police filter.

Summary / Potential Scheme of Future Flue-gas Cleaning

The scheme of a potential future flue-gas cleaning system is shown in the following figure 5. All elements of flue-gas cleaning, which were described earlier, have been taken into consideration, especially under the point of view that reusable or environmentally neutral products have to be generated.

As it can be seen in figure 5, the products which will be incinerated, enter appropriate combustion systems, and the flue gases pass related heat exchangers. The gases enter the flue-gas cleaning system, where the dust is mainly obtained as boiler ash, but also from the dust precipitator, from the spray dryer, and from the fabric filter. The collected dust either goes into a general dust treatment with potential dust smelting, or is deposited in an appropriate disposal site, e.g. underground or in a hazardous waste landfill. Slag can be disposed of at a disposal site for inert products or be utilized. The spray dryer in front of the cloth filter serves mainly as evaporator for the cleaned

wastewater from the scrubber stages 1 and 2. After scrubbing, the flue gas is reheated from $60-70^{\circ}$ C to $100-120^{\circ}$ C and may pass a lignite coke stage where organic compounds and other pollutants are removed. Eventually, NO_x reduction takes place on a catalyst. For safety reasons, a fabric filter can be installed at the very end which is coated using the activated carbon injection down stream fabric filter and which acts as a police filter.

FIGURE 5 Scheme of a Potential, Advanced, Future Refuse Treatment Facility

Compared with refuse, hard coal and brown coal usually contain less pollutants making it easier to re-use the products which are generated by flue-gas cleaning. For the same reason, simpler flue-gas cleaning systems are sufficient for coal combustion.

By use of appropriate flue-gas cleaning systems which usually consist of dust removal, separation of acidic pollutants, heavy metals removal, NO_x reduction, and minimization of organic pollutants, clean gases can be generated with very low final emissions. These achievable emissions certainly meet the requirements of the Federal Republic of Germany and of the EEC. Alkaline earth metal compounds like quicklime, slaked lime, or limestone are important aids. They are needed for the removal of acidic pollutants, for the minimization of organic pollutants and components from the flue gas, as well as for the neutralization and cleaning of acidic, polluted scrubber water from the recommendable wet flue-gas cleaning process. However, the processes cannot run without the use of chemicals like NaOH, NH₂, or TMT 15.

BIBLIOGRAPHY

[1]	Reimann, D. O.,
	Rostfeuerungssysteme und Emissionsminderung durch
	Feuerleistungsregelung
	(Grate-firing Systems and Decrease of Emission by Optimized Combustion
	Processes)
	in: Müllverbrennung und Umwelt 5.
	(Hrsg.): K. J. Thomé-Kozmiensky
	EE-Verlag ISBN 3-924511-56-X (1991)
[2]	Reimann D. O.: Hämmerli-Wirth H
[~]	Die thermische Restabfallbehandlung in zeitgemäßen
	Abfallwirtschaftskonzenten
	(Thermal Treatment of Befuse in Lin-to-date Waste Management Programs)
	Abfallwirtschafts Journal Heft 8 "Verbrennung 1" (1992), pp. 605-679
	und Abfallwittschafts Journal, Heft 12 "Verbrennung 2" (1992) pp 954-983
[3]	Akademie für Paumforschung und Landesplanung
[9]	Elemente einer integrierten Abfallwidschaft
	(Elemente of one Integrated Weste Management)
	API Homover Foreebunge und Sitzungebericht Nr. 106 (1003)
(41	Rundesministerium für Limwelt Naturschutz und Beaktoreicherheit
[4]	Sochete allocmoine Verweltungeversebrift zum Abfallgesetz
	(TA Stealungsabian) (6th Constal Administrative Dule to Weste Degulation (Technical Instruction for
	(our deneral Administrative Adie to waste Regulation (rechincal instruction for
	Municipal Waster Desiglaterupes TA Sigdhungsschfell Denn Stendusen 07.09. (1000)
(6)	Projektgruppe TA Stediungsablali, Bonn, Stand vom 27.06. (1992)
[ວ]	Bayerischer Landlag, Gesetz zur Vermeidung, Verwertung und eenstigen Enteergung von Abfällen
	Gesetz zur Vermeidung, Verweitung und sonstigen Entsorgung von Ablanen
	Altalluistashafta und Altastan saatta Davah(O)
	Abrallwirtschatts- und Altiastengesetz - BayAbra)
	(Rule for Avoidance, Utilization, and Other Management of Waste and for
	Registration and Surveillance of Superfunds ' in Bavaria (Bavarian Law of Weste Mana and Surveillance of Superfunds)
	waste management and Superrunds - BayArd)
	Munchen, Hechtsgultig seit 1. Marz (1991)
[6]	Fischer, G.,
	Brauchen wir noch Deponien
	(Do We Still Need Landfills?)
(EntsorgungsPraxis, 11, (1992) p 747
[/]	Degussa,
	IMI 15 für die Abtrennung von Schwermetallen aus Abwassern
	Firmenprospekt "Unwelt und Degussa
	(IMI 15 for the Removal of Heavy Metals from Wastewater)
	CH 312-6-2-1187 Vol. (1987)
[8]	Bundesministerium des Inneren,
	13. Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes
	(Verordnung für Großfeuerungsanlagen - 13. BImSchV)
	(13th Decree to the Implementation of the German Federal Clean Air Act
	(Decree for Large Combustion Plants))
	Bonn, vom 22. Juni (1983)
[9]	Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit,
	17. Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes
	(Verordnung über Verbrennungsanlagen für Abfälle und ähnliche brennbare
	Stoffe - 17. BlmSchV-)
	(17th Decree to the Implementation of the German Federal Clean Air Act
	(Decree on Combustion Plants for Waste and Similar Combustible Materials)
	Bonn, vom 01. 12. (1990)

[10]	Gutberlet, H.; Spiesberger, A.; Kastner, F.; Tembrink, J.,
	Zum Verhalten des Spurenelementes Quecksilber in Steinkohlefeuerungen mit Pauchgasseinigungsanlagen
	(The Behavior of the Trace Element Mercury in Coalfired Powers lants with
	Flue as Cleaning Systems)
	VGB Kraftwarkstachnik 72 Haft 7 (1992)
(11)	Poimonn D. O.
[11]	Treatment of Westewater from Befuse Incineration Diante
	Weste Menagement & Descareb 5 (1097) pp 147 157
(10)	Vicerd L E
[12]	Recent developments in flue gas measurement methods, particularly in the
	field of incineration
	ISWA Appual Conference Papers, Amsterdam, September (1992) pp. 162-166
[13]	Paimann D. O.: Turega von P.
[10]	Redeutung und Techniken der Entstaubung von Bauchgasen
	(Importance of and Techniques for Dust Removal from Flue Gases)
	EntsorgungsPraxis Heft 4 (1990) on 142-153
[14]	Reimann D O
[14]	Mercury Output from Garbage Incineration
	Waste Management & Research 4 (1986) pp 45-56
[15]	Reimann D. O.
[15]	Reeinflussung der Reststoffe aus der Rauchgasreinigung durch
	PVC-Mitverbrennung
	(PVC-Influence on Residues from Flue-gas Cleaning Systems by Combined
	Combustion with MSW)
	Tagungsband zum 7. IBC-Berlin
	(Hrsg.): K. J. Thomé-Kozmiensky
	EF-Verlag, Berlin, Oktober (1992)
[16]	Reimann, D. O.
[]	Dioxin Emissions: Possible Techniques for Maintaining the Limit of 0.1ng TE/m ³
	(as of 1990/91)
	Waste Management & Research, 10 (1992) pp 37-46

152

;

Table of Dry / Bernicky / Web Processes for the Removal of Acids Policiants as web as Polential Residues

FIGURE 4 Table of Dry / Semidry / Wet Processes for the Removal of Acidic Pollutants as well as Potential Residues

(REIMANN 1992)

154

Comparison of Refuse Pollutants and Heavy Metals from Various Plants and Range of Results **TABLE 1**

1 N 1		Mean values	Mean values		Mean values	
Element	German	German		EAWAG	Bamberg	Range
	UBA	Babcock	(Brunner &		(Reimann	of results
	(FRG1990)	(Horch 1987)	Mönch 1987)	(CH 1982)	1987)	g/Mg
Chlorine (CI)	3000-8000	7000	6900	7000	7500	6900-8000
Fluorine (F)	.10-50	200	140		100	100-200
Sulphur (S)	650-5000	5000	2700	5000		2700-5000
Zine (Zn)	5000	1000	2000	1200-2000	1900	1000-2000
Cadmium (Cd)	2,0-50	10	8,7	3,0-15	10	3,0-15
Lead (Ph)		800	430	500-1200	450	430-1200
Copper (Cu)	The second se	400	200	240-600	500	200-600
Chromium (Cr)				1	250	1250/
Mercury (Hg)	0,3-14	4	8	5	4	2,0-5,0
Nickel (Ni)			•	•	80	/80/
Arsenic (As)	1		the second second		4	14/
	Contraction of the second					All data in o/Mo refuse

TABLE 2	Comparison	of Permitted	d Emissions	Limits for So	lid Fuels			
General and a State	4 P. 1. 0'2 P		4 bs	1 2 0 S V	1 C			
emission	dimension	ma	IX.	ma	IX.	separate m	neasurement	anticipated
Charles and a long		daily mea	anvalues	half-hour r	neanvalues			state of the art
DDVE THE TOTAL		coal	refuse	coal	refuse	coal	refuse	refuse
		13.	17.	13.	17.	13.	17.	daily value
		BImSchV	BImSchV	BImSchV	BImSchV	BImSchV	BImSchV	repect.
		>50 MW		>50 MW		>50 MW		sep. measur.
O2-reference	Vol%	7* (6,5)**	11° (3)°°	7 (6,5)	11 (3)	7 (6,5)	11 (3)	11 (3)
dust	mg/m3	50	10	100	30			<3
co	mg/m3	250	50	500	100			<20
S02	mg/m3	2000	50	4000	200	The second se		<20
NOX	mg/m3	\$ 008	200	1600 *	400	and a second design of the		<70
Anna		1800 ***		3600 ***			0	
HCI	mg/m3	200	10	400	30		14.	<3
		(<300 MW)		(<300 MW)				
H	mg/m3	30	1	60	4			<0,3
		(<300 MW)		(<300 MW)				
Org. C	mg/m3	Rophysics	10	1	20			<4
Hg	mg/m3						0,05	<0,02
Cd+TI	mg/m3						0,05	<0,01
heavy metals	mg/m3						0,5	<0,1
dioxin-TE	ng/m3	AND A MARK					0,1	<0,1
		nondraamin k						
* grate and fluidiz	zed bed firing	83:458		° grate firing			1944 UNU	
** pulverized coal	I firing with dry	y ash remova		°° pyrolyses	a duration of a			
*** pulverized co:	al firing with lid	quid ash rem	oval	ing to Birn Schr				Doctee LBA
all statements ref	fer to standard	d conditions ((273 K, 1013	mbar, corresp	oonding O2 re	ference)	USTBIA - AIBIAU	PAUSENCHO -
formula for oxyge	en reference:	1112121210121			ALS PROPERTY.			
	2023	~outbar		Em: measure	d emission	Contration of		
EB = ((21 - 0B) /	(21-Om)) . En	E	mit	EB: emission	, referred to the	he oxygen refu	erence	
				Om: measure	ed oxygen cor	ntent		
				OB: correspo	inding O2 refe	erence		

and a second sec	TABLE	3	Comparison	of Permis	sible Em	issions Accor	ding to Some	
Tornula for	Your Col	Lauce	International	Regulatic	ons for V	Vaste-to-Ener	gy Plants	
ismetelle list	Ш	EC	EEC	GERM	ANY	NETHERLANDS	AUSTRIA	SWITZERLAND
Kind of regulation	Dir	ective	Directives	17. Decree t	o BlmSchG	Directive	Decree LRV.K	Decree LRV
ISKASKING SK	Pro	posal	89/369		2 POLYSES	"Incineration"		
Scare sug	THOMAS C		89/429					
Kind of refuse	Hazard	ous waste	Mun. waste	All waste inc	sinerations	Haz./Mun. waste	Haz./Mun. waste	Haz./Mun. waste
		N III O					(Incineration with boiler)	
Kind of plants	New an	id existing	New and existing	New and	d existing	New and existing	New	New and existing
	Pro	posal 92	1. Dec. 1990	1. Dec	. 1990	15. Aug 1989	13. Januray 1989	1. Feb 1992
Realisation up to			1996	(1994	-1996)	(1993-1997)		(1997-2002)
N° Pollutant			I MARY CONSIN		T-SWAR DO			
1 Total dust	5	10	30	10	30	5	15	10
2 TOC	2	10	20	10	20	10	50	20
3 HCI	5	10	50	10	60	10	10	20
4 HF	-	2	1800 2	-	4	-	0,7	2
5 SO2	25	50	300	50	200	40	50	50
6 NOX	-	Suu S		200	400	800 70	100	80
7 Mercury		0,05	0.2		0.05	0.05	0.05 (0.1)	0.1
8 Cadmium	(incl.TI)	0,05	0,2	(incl.TI)	0,05	0,05	0,05	0,1
9 Other heavy	Sum	0,5	Pb+Cr+Cu+Mn 5	Sum	0,5	Sum 1	Pb + Zn + Cr 2	Pb + Zn 1
			NI + As 2	A L	Vanou	HI Vd-2mlR	As + Co + NI 0,5	
10 PCDD/F	0,1 (targe	()		0.1		0.1	0.1	-
dloxIn-Te ng/m3						8014840R		PLETCE OF BUE BUE
Cont. measure. #1-6	24 h	0.5 h	4	24 h	450	4	05 h	and the second
Measurement #7-9		0,5 - 4 h	(with adaptation)		0,5-2 h	(with exceptions)	generally	(with adaptations)
Duration #10	in low	6-16 h	ALL ALL ALL DITING OF ALL PARTY		6-16 h	1 0010	3-10 h	

METHOD of	NN	MBER	TOTAL	, , ,	SINGLE	PLANT	
FLUE GAS CLEANING	PUNCIN	IERATION ANTS			RANGE	AVERAGE	
SYSIEM	c	%	10 ³ Mgxa ⁻¹	%	10 ³ Mgx(a)	(PLANT)-1	
WET SYSTEM with or without wastwater effluent	27	55	5.342	57	60 - 592	198	
SEMIDRY System	14	28	2.748	29	62 - 386	196	
DRY SYSTEM	œ	17	1.352	14	25 - 400	169	
TOTAL AMOUNT	49	100	9.442	100			
						(STATUS 1992)	

Table 4: Number and Distribution of the Prime Flue-gas Cleaning Systems - Wet, Semidry, Dry - at the Waste Incineration Plants in the FRG

Overview of Dioxin TE Minimization Methods as of 1392/93) Method Treatment point Temp. TE Advantages Disadvantages Comm. Preventative Exclusion, during collec- · 7 Theoretically no. None Practically impos. Preventative Exclusion, during collec- · 7 Theoretically no. None Practically impos. Which lead to doxin forma- · 7 Theoretically no. None Practically impos. Which lead to doxin forma- · 7 Theoretically no. None Practically impos. Which lead to doxin forma- · 7 Theoretically no. None Freational stack Indivincing compon. Which lead to doxin forma- · 7 Theoretically no. Practically impos. Indivincing compon. Which lead to doxin forma- · 7 Theoretically no. Practically impos. Total total total total forma- · 1 Theoretically no. Practically impos. Total t		TABLE 5			N AU DOCTOR MANA	A advertise A	
Method Treatment point Temp. TE Advantages Disadvantages Comm Preventative Exclusion, during collec. °C 7 7 Advantages Practically impos Preventative Exclusion, during collec. °C 7 7 Advantages Practically impos Mich lead to dioxin forma- °C 7 7 additional process Freatically impos Mich lead to dioxin forma- in Preventative None Practically impos Mich lead to dioxin forma- in Preventative None Practically impos Mich lead to dioxin forma- in Preventative None Practically impos Mich lead to dioxin forma- in Preventative None Practically impos Method Preventative Solute Practically impos Practically impos Method Preventative Preventative Preventative Preventative Method Preventative Preventative Preventative Preventative Methodisto Prev		Overview of Dioxir	TE Mi	nimiza	tion Methods (as of 1992/93)	
range dioxin range dioxin reactically imposs Preventative Exclusion, during collee: - 7 Reperted Practically imposs Preventative Exclusion, during collee: - 7 Reperted Practically imposs Primary Iton - 7 Required Required Realize with readio Primary Furmace and after-burning 550 <0.1 Thermative readinative Secondon Secondon Primary Furmace and after-burning 550 <0.1 Thermative readinative Secondon	Method	Treatment point	Temp.	Ħ	Advantages	Disadvantages	Comments *
Preventative Exclusion, during collec. c nyme nyme Practically imposibility Preventative Exclusion, during collec. - 7 Theoretically no None Practically imposibility Mich lead to dioxin forma. - 7 Thermal destruction None 5 fractically imposibility Mich lead to dioxin forma. - 7 Thermal destruction None 5 fractically imposibility Mich lead to dioxin forma. - 7 Thermal destruction S fractically imposibility Primary Furmance and after-burning >550 <0.1 Thermal destruction Consequent stack gas Fraditalibility Primary Furmance and after-burning >550 <0.1 Thermal destruction S fraditalibility Primary Factically imposite Foot incrustion Incrustion S fraditalibility Primary Factically imposite Foot incrustion S fraditalibility Foot incrustion Primary Factically imposite Foot incrustion Foot incrustion Foot incrustincrustin foot incrustion Sta			range	dioxin			
Preventative Exclusion, during collec. · ? Theoretically no None Practically imposite with restord in the solution of most in the solutin the solution of most in the solutin the solution of mos			သိ	ng/m3			
measuresino of waste ingredientsinadditional processinrealize with residwhich lead to dioxin forma-in	Preventativ	Exclusion, during collec-	-	2	Theoretically no	None	Practically impossible to
which lead to dioxin forma- tooiequirediequired iedience no absolute ied or dioxin componit or dioxin componit or dioxin componit or dioxin componit or dioxin componit or dioxin componitsince no absolute ied or dioxin componit or dioxin componit or dioxin componitPrimarytumtermsince no absolute or dioxin componit or dioxin componit or dioxin componitsince no absolute or dioxin componit or dioxin componitPrimarytumconsequent stack gassince no absolute or dioxin requiredsince no absolute or dioxin requiredsince no absolute or dioxin requiredMeasureszonoconstanting residues: is dioxin requiredconsequent stack gassince no absolute or dioxin requiredsince no absolute or dioxin requiredMeasuresUpper or dioxin regulationconstanting residues: is dioxin requiredconstantion is dioues trom stackMeasuresUpper or dioxin residuesconstanting residues: is dioxin regulationconstantion is dioues trom stackStack gasUpper or dioxin residuesConstanting residues: is dioxin residuesconstantion is dioues transitionStack gasBetween boiler and stackconconding residuesfor in the case or dioxin residuesdioxin residuesStack gasBetween boiler and stackconconconstantiondioxin-residuesdioxin-residuesStack gasBetween boiler and stackconconconstantiontimdioxin-residuesdioxin-residuesStack gasBetween boiler and stack	measures	tion of waste ingredients			additional process		realize with residual waste
Internation Internation <thinternation< th=""> <thinternation< th=""></thinternation<></thinternation<>		which lead to dioxin forma-			required		since no absolute exclusion
PrimaryEurmance and after-burning>550<0.1Thermal destructionConsequent stack gasReliable methodmeasureszonezoneor org. pollutants:vorg. pollutants:org. pollutants:		tion				and the second	of dioxin components possible
measureszonezoneof org. pollutants evmeasureszoneintermediationintermediationintermediationmeasuresintermediationintermediationintermediationintermediationmentintermediationintermediationintermediationintermediationmentintermediationintermediationintermediationintermediationmentintermediationintermediationintermediationintermediationstack gasUpstream of the boiler>400<1	Primary	Furmance and after-burning	>850	< 0.1	Thermal destruction	Consequent stack gas	Reliable method for destroy-
(introduction)iscarcely any dioxin- side affactsfurther removal of sidues from stackFPcontaining residues; side affacts with side affacts of inhibi-sidues from stackFPSide affactsdioxin requiredmentFPSide affactsdioxin requiredmentFPSide affactsside affacts of inhibi-Adequate only inFPPPpood insulationside affacts of inhibi-Adequate only inFPPPPpood insulationintersidues;side affacts of inhibi-Adequate only inFPPPPLow-dioxin residues;side affacts of inhibi-Adequate only inFPPPPIntersidues;side affacts of inhibi-Adequate only inFPPPPIntersidues;side affacts of inhibi-Adequate only inFPPPIntersidues;PAdequate only indivindegrading inFPPPIntersidues;PAdequate only indivindegrading inFPPIntersidues;PIntersidues;Pdivindegrading inFPPIntersidue;PIntersidue;Pdivindegrading inFPPIntersidue;PIntersidue;Pdivindegrading inFPPPIntersidue;PPDDFPP <td< td=""><td>measures</td><td>zone</td><td></td><td></td><td>of org. pollutants;</td><td>cooling - resynthesis,</td><td>org. pollutants even in re-</td></td<>	measures	zone			of org. pollutants;	cooling - resynthesis,	org. pollutants even in re-
(i)(i		THE REAL PARTY			scarcely any dioxin-	further removal of	sidues from stack gas treat-
KiteSide effect withSide effect withSide effects of inhibi-Adequate only inStack gasUpstream of inside or>400<1					containing residues;	dioxin required	ment
Stack gasUpstream of inside or>400good insulationAdequate only intreatmentdownstream of the boiler>400<1		and a second sec			side effect with		
Stack gasUpstream of inside or>400<1Low-dioxin residues;Side effects of inhibi-Adequate only intreatmentdownstream of the boiler>10residue recyclingtors have to be studied,tions of further dd>4000 °Cwith high temp. dust re->10residue recyclingtors have to be studied,tions of further dd>4000 °Cwith high temp. dust re->10residue recyclingtors have to be studied,tions of further dd>4000 °Cwith high temp. dust re->10residue recyclingtors have to be studied,tions of further dd>400 °Cwith high temp. dust re->10calourretainal aspects, incrus-dioxindegrading rep2400 °Cmoval or inhibitors<10condicitationtation, costs, safety risksinterval2400 °Cprocess; catalysic oxi->200>0.1low dioxin-tree residuesretainal aspects, incrus-dioxindegrading rep2400 °Cdation atter the stack gas>200>0.1dioxin-tree residuesretainal, reheatinguptor2500 °Cdation atter the stack gas>2000.1deal final treatment, reheatingustordiaticult;2500 °Cdation atter the stack gas<1000.1deal final treatment, reheatingustordiaticul;2500 °Cbing, possibly downstream<1000.1deal final treatment, reheatingustordiaticul;2500 °Cbing, possibly downstream<1000.1deal final treatmentreheatingustord					good insulation		
treatmentdownstream of the boilerresidue recyclingtors have to be studied,tions of further d>400 °Cwith high temp. dust re-to furmace formaterial aspects, incrus-dioxindegrading r>400 °Cwith high temp. dust re-tetoxificationtation, costs, safety risksdioxindegrading rstack gasBetween boiler and stack<400	Stack gas	Upstream of inside or	>400	<1	Low-dioxin residues;	Side effects of inhibi-	Adequate only in combina-
>400 °Cwith high temp. dust re-to turnace formaterial aspects, incrus-dioxindegrading reindegrading reveal or inhibitorsmoval or inhibitorsmoval or inhibitorsdetoxificationtation, costs, safety risksStack gasBetween boiler and stack<400	treatment	downstream of the boiler		N	residue recycling	tors have to be studied,	tions of further downstream
moval or inhibitorsmoval or inhibitorsdetoxificationtation, costs, safety risksStack gasBetween boiler and stack<400<1Low-dioxin residuesReduced energy removalUniform abrupt qtreatmentgas treatment quenching<400<1Low-dioxin residuesReduced energy removalUniform abrupt qtreatmentgas treatment quenching<400<1Low-dioxin residuesReduced energy removalUniform abrupt qtreatmentgas treatment quenching<1<1Low-dioxin residuesReduced energy removalUniform abrupt qtreatmentgas treatment quenching<1<1Low-dioxin residuesReduced energy removalUniform abrupt q <th< td=""><td>>400 °C</td><td>with high temp. dust re-</td><td>0 1 3</td><td>N TH</td><td>to furnace for</td><td>material aspects, incrus-</td><td>dioxindegrading measures</td></th<>	>400 °C	with high temp. dust re-	0 1 3	N TH	to furnace for	material aspects, incrus-	dioxindegrading measures
Stack gasBetween boiler and stack<400<1Low-dioxin residuesReduced energy removalUniform abruptfreatmentgas treatment quenchingin the case of down-risk of incrustation/difficult;<400-process; catalystic oxi-stream dust removal;corrosion, large space<400-process; catalystic oxi-difficult;difficult;<200 °Cdation after the stack gasdiorin-free residuesrequirement, reheatinguseful only in cor<200 °Cbing, possibly downstream<100	in the second	moval or inhibitors		300	detoxification	tation, costs, safety risks	
treatmentgas treatment quenchingin the case of down- isk of incrustation/difficult;<400-	Stack gas	Between boiler and stack	<400	1 >	Low-dioxin residues	Reduced energy remova	Uniform abrupt quenching
<400 -process: catalystic oxi-stream dust removal:corrosion, large space>200 °Cdation after the stack gas>200>0.1dioxin-free residuesrequirement, reheatinguseful only in cortreatmenttreatment<	treatment	gas treatment quenching			in the case of down-	risk of incrustation/	difficult;
>200 °C dation after the stack gas >200 >0.1 dioxin-free residues requirement, reheating useful only in convict on the stack gas treatment treatment exat exat of stack gas with SCR NOX Stack gas Substantial dust removal <100	<400 -	process; catalystic oxi-			stream dust removal;	corrosion, large space	
treatmentinformation<	>200 °C	dation after the stack gas	>200	>0.1	dioxin-free residues	requirement, reheating	useful only in combination
Stack gasSubstantial dust removal<1000.1Ideal final treatmentActive coke problems,Combination of mtreatment<5 mg/m3, stack gas scrub-		treatment			A STATE OF A	of stack gas	with SCR NOX
treatment<5 mg/m3, stack gas scrub-mas control filter,such as spontaneousscrubber with add<200 °C	Stack gas	Substantial dust removal	<100	0.1	Ideal final treatment	Active coke problems,	Combination of multistage
<200 °C bing, possibly downstream mardly and residues ignition, costs, re- downstream fabri active coke filter in fixed mad low active coke sidues and disposal, active coke filght bed or flight stream process; A-coke >140 0.1 requirement; high space requirement process suitable injection+ fabric filter >140 0.1 tabric filter with unreliable process total emissions injection+ fabric filter intile expense intile expense little expense little expense	treatment	<5 mg/m3, stack gas scrub-	- + 11 + -		as control filter,	such as spontaneous	scrubber with additive or
active coke filter in fixed and low active coke sidues and disposal, active coke flight bed or flight stream process; requirement; high space requirement process suitable dry/semidry process; A-coke >140 0.1 can be used with with fixed bed filter, total emissions injection+ fabric filter model 0.1 fabric filter with unreliable process total emissions injection+ fabric filter model intervente liftle expense liftle expense	<200 °C	bing, possibly downstream			hardly any residues	ignition, costs, re-	downstream fabric filter and
bed or flight stream process; cequirement; high space requirement process suitable dry/semidry process; A-coke >140 0.1 can be used with with fixed bed filter, total emissions injection+ fabric filter >140 0.1 fabric filter with unreliable process total emissions	9	active coke filter in fixed			and low active coke	sidues and disposal,	active coke flight stream
dry/semidry process; A-coke >140 0.1 can be used with with fixed bed filter, total emissions injection+ fabric filter injection+ fabric filter intervith unreliable process interviter		bed or flight stream process;			requirement;	high space requirement	process suitable for minimum
injection+ fabric filter into a fabric filter with unreliable process into a little expense		dry/semidry process; A-coke	>140	0.1	can be used with	with fixed bed filter,	total emissions
little expense	A Real Party	injection+ fabric filter	1 1		fabric filter with	unreliable process	0.5.5
	and south and		(1) (1 t b		little expense		(D. O. Reimann)