Heat and Material Balances for Nonautogenous Wastes

F. MICHAEL LEWIS, DAVID A. HOECKE and PROMOD CHANDRA

INTRODUCTION

The incineration of nonautogenous (will not sustain combustion) wastes is becoming increasingly prevalent as more stringent water quality regulations are being enacted and enforced and land available for waste disposal is becoming increasingly difficult to find.

An understanding of the parameters affecting combustion temperatures and auxiliary fuel usage will aid both the designer and user of incinerators in choosing those items, which collectively form the incinerator system, that will give optimum performance at minimum cost.

The purpose of this paper is to provide the reader with a method of making heat and material balances on nonautogenous wastes. The method of solution is applicable where:

1) Auxiliary fuel is mixed directly with the waste in the combustion chamber.

2) Auxiliary fuel is supplied by a fuel burner preheating the combustion air.

3) Auxiliary fuel is supplied by a fuel burner serving as an after-burner for the combustion products from the incinerator.

The solutions obtained only approximate a real system. Items such as heat losses to surroundings, water vapor present in the air, heat of compression in combustion air, and others have not been included in the calculations. The values to be placed on these items are usually determined by the specific type of equipment used to perform the operation and judgment of the designer. However, the results of these calculations do enable the designer to graphically display them in such a manner as to indicate the optimum mode of operation.

These calculations have been carried out past the usual significant figures in order to facilitate bookkeeping when making the heat and material balances.

TERMINOLOGY

The following terminology is generally used in describing the physical characteristics of waste sludges.

1. Total Solids (TS) – the percentage, by weight, of the solid fraction of the waste sludge.

NOTE: Unless specifically stated, the liquid fraction is assumed to be water.

2. Volatile Solids (VS) – the percentage, by weight, of the combustible fraction of the Total Solids (TS). Includes fixed carbon. The remaining solids are assumed to be ash.

3. Heating Value (HHV) - can be expressed either as:

- (a) Btu's/lb. TS
- (b) Btu's/lb. VS
- (c) Btu's/lb. Sludge (Total Solids plus water)

Presented to the ASME Incinerator Division Industrial Incineration Committee, September 18, 1968.

NOTE: Bomb Calorimeter results are usually reported as Btu's/lb. TS

CALCULATIONS

For the example calculation presented here, we shall use 100 lb. Total Solids as a calculation base. We shall also assume that the waste sludge has the following analysis:

4	JItimate Analysis of	Volatile Solids
(Carbon	50%
]	Hydrogen	7%
(Oxygen	39%
]	Nitrogen	4%
		100%
]	Btu's/lb. VS	9,500

Let us also assume that we will incinerate the sludge with only 30% Excess Air to minimize auxiliary fuel usage and burn at 1650°F. to insure complete deodorization.

Total Solids	22% TS	From the preceeding we can now determine
Volatile Solids	80% VS	the feed to the incinerator.

100 lb. TS x $\frac{80 \text{ lb. VS}}{100 \text{ lb. TS}}$ = 80 lb. VS	
50% C x 80 lb. VS = 40.00 lb. Carbon	
7% H x 80 lb. VS = 5.60 lb. Hydrogen	
39% O x 80 lb. VS = 31.20 lb. Oxygen	
4% N x 80 lb. VS = <u>3.20</u> lb. Nitrogen	
80.00 lb. VS	80.00 lb. VS
100 lb. TS x $\frac{(100 - 22)$ lb. H ₂ O}{22 lb. TS} =	354.50 lb. H ₂ O
100 lb TS - (100 - 80) lb. Ash	20.00 lb. Ash
100 lb. TS x = 100 lb. TS	454.50 lb. Sludge

=

COMBUSTION OF VOLATILE SOLIDS

10 00 lb	с »	32 lb. O		
40.00 10.	C X	12 lb. C		
5 60 lb	Нх	16 lb. O		
5.00 10.	11 .	2 lb. H		
Oxygen available in VS				

0.30 x 120.27

156.35 x
$$\frac{76.85 \text{ lb. N}}{23.15 \text{ lb. O}}$$

Combustion Products

40.00 lb. C x
$$\frac{44 \text{ lb. CO}_2}{12 \text{ lb. C}}$$

5.60 lb. H x $\frac{18 \text{ lb. H}_2 \text{ O}}{2 \text{ lb. H}}$

 106.67 lb. Oxygen

 44.80

 151.47

 -31.20

 120.27 lb. Stoichiometric Oxygen

 36.08 lb. Excess Oxygen

 156.35 lb. Oxygen for Combustion

 519.03 lb. Nitrogen

 675.38 lb. Combustion Air

 146.67 lb. CO2

50.40 lb. H₂ O

=

=

Nitrogen in air 519.03 lb. Nitrogen in VS 3.20		
522.23 lb.	=	522.23 lb. N ₂
Excess Oxygen		36.08 lb. O ₂ 755.38 lb. Flue Gas
Calculation Check		
Volatile Solids Combustion Air		80.00 lb. 675.38 lb.
		755.38 lb.
Output		
Flue Gas		755.38 lb.
COMBUSTION OF AUXILIARY FUEL		
Natural Gas:		
76% Carbon		0.044/lb./ft. ³
24% Hydrogen		1,003 Btu's/ft. ³
22,800 Btu's/lb.		
Combustion of 1 lb. Natural Gas at	30% XS Air.	
0.76 lb. C x $\frac{32 \text{ lb. O}}{12 \text{ lb. C}}$	= 1	2.03 lb. Oxygen
0.24 lb. H x $\frac{16 \text{ lb. O}}{2 \text{ lb. H}}$	=	<u>1.92</u> lb.
	2010	3.95 lb. Stoichiometric Oxygen
0.30 x 3.95		1.19 lb. XS Oxygen
		5.14 lb. Combustion Oxygen
76.85 lb. N	=	17.06 lb. Nitrogen
5.14 lb. O x ${23.15 \text{ lb. O}}$		22.20 lb. Combustion Air

 $\begin{array}{l} \text{Combustion Products} \\ \text{0.76 lb. C } x \frac{44 \text{ lb. CO}_2}{12 \text{ lb. C}} = \\ \text{0.24 lb. H } x \frac{18 \text{ lb. H}_2 \text{ O}}{2 \text{ lb. H}} = \\ \end{array}$

Excess Oxygen With Borners Nitrogen in combustion air 2.79 lb. CO₂

2.16 lb. H₂O

1.19 lb. O₂ 17.06 lb. N₂ 23.20 lb. Flue Gas

Calculation Check

Input

1.00 lb. Natural Gas 22.20 lb. Combustion Air 23.20 lb.

Output

23.20 lb. Flue Gas

HEAT AND MATERIAL BALANCE

Enthalpy of combustion produce	cts at 1650°F.		
Carbon Dioxide	CO2	419 Btu's/lb.	
Water	H_2O	1839	
(Including Heat of Vapor	ization)		
Nitrogen	N_2	417	
Oxygen	02	386	
Ash	Ash	413	
Btu Output from Sludge (Volatile Sc	olids, Water, ar	nd Ash) @ 1650°F.	
146.67 lb. CO ₂ x 419 Btu's/lb.	=	61,455 Btu's	
50.40 lb. H ₂ O x 1839	=	92,686	
522.23 lb. N ₂ x 417	=	217,777	
36.08 lb. O ₂ x 386	=	13,927	
354.50 lb. H ₂ O x 1839	=	651,926	
20.00 lb. Ash x 413	=	8,260	
		1,046,031 Btu's	
Btu Output from 1 lb. Natural Gas @	1650°F.		
2.79 lb. CO ₂ x 419	=	1,169 Btu's	
2.16 lb. H ₂ O x 1839	=	3,972	
17.06 lb. N ₂ x 417	=	7,114	
1.19 lb. O ₂ x 386	=	459	
		12,714 Btu's	
Determination of Natural Gas requires	ments		
Let X equal the pounds of Natu	ral Gas require	ed	
Input			
80.00 lb. VS x 9,500 Btu's/	lb. VS =	760,000 Btu's	
X lb. Natural Gas x 22,800	Btu's/lb. =	22,800X Btu's	
Output	·	and the second second second	
Sludge		1,046,031 Btu's	
Natural Gas		12.714X	
		·	

Input		Output
760,000 + 22,800X =		1,046,031 + 12,714X
10,086X =		286,031
X =		28.36 lb. Natural Gas
Total Air Requirements		
For combustion of VS		675.38 lb.
For combustion of Natural Gas		
28.36 lb. gas x $\frac{22.20 \text{ lb. air}}{1.00 \text{ lb. gas}}$ =		<u>629.59</u> 1,304.97 lb. air
Combustion Products from Natural Gas		
28.36 lb. gas x 2.79 lb. CO ₂ /lb. gas	=	79.12 lb. CO ₂
28.36 lb. gas x 2.16 lb. H ₂ O/lb. gas	=	61.26 lb. H ₂ O
28.36 lb. gas x 1.19 lb. O ₂ /lb. gas	=	33.75 lb. O2
28.36 lb. gas x 17.06 lb. N ₂ /lb. gas	=	483.82 lb. N ₂

Total Weight of Combustion Products (Sludge + Natural Gas)

225.79 lb. CO₂ 466.16 lb. H₂ O 69.83 lb. O₂ <u>1,006.05 lb. N₂</u> 1,767.83 lb. Flue Gas/100 lb. TS

Calculation Check

Input	
Air	1,304.97 lb.
Sludge	454.50 lb.
Natural Gas	28.36 lb,
	1,787.83 lb.
Output	
Flue Gas	1,767.83 lb.
Ash	20.00 lb.
	1,787.83 lb.

	$V = \frac{mRT}{p}$
	$V = ft.^3$
	$P = lbf./ft.^2$
	m = lbm.
	$R = ftlbf./lbm.^{\circ}R$
	$T = {}^{\circ}R$
CO ₂	R = 35.10 ftlbf./lbm.
H_2O	R = 85.76
N_2	R = 55.15
O ₂	R = 48.28

For the example calculation:

°R

 $T = 1650 + 460 = 2110^{\circ}R$ $P = 14.7 \text{ lbf./in.}^2 \text{ x } 144 \text{ in.}^2/\text{ft.}^2 = 2116.8 \text{ lbf./ft.}^2$ $V = \frac{2110.0}{2116.8} x m x R = 0.99679 x m x R$ CO_2 7,900 ft.³ 0.99679 x 225.79 35.10 = 7.42% х 0.99679 N_2 1,006.05 55.15 = 55,306 51.97% = х х O_2 0.99679 69.83 48.28 3,361 3.16% = = х х H_2O 0.99679 39,850 85.76 466.16 = 37.45% х х = 106,417 ft.³ 100.00% On a dry basis (Orsat Analysis) CO_2 7,900 ft.³ = 11.87% N_2 55,306 83.08% = O_2 3,361 ----5.05% 66.567 ft.³ 100.00%

DISCUSSION

In order to cover a wide range of input conditions, a computer program was developed to perform the calculations described in this paper. Listed below are the parameters used in these calculations.

Btu/lb. VS	6,350; 9,500; 12,500
% TS	10; 15; 20; 25; 30; 35
% VS	60; 70; 80

%	XS	Air		40;	60;	80;	100;	120	
			-						

Temperature °F. 1,400; 1,500; 1,600; 1,700; 1,800

Thirteen hundred and fifty (1,350) separate heat and material balances were made. Several graphs showing the results of these calculations are included in the appendix of this paper. With the aid of graphs such as these, the designer can evaluate alternatives to a particular incineration problem.

RANGE 1400°F. to 1800°F.

CO_2	h =	0.30325 T		81.1	Btu/lb.
--------	-----	-----------	--	------	---------

- N_2 h = 0.28550 T 54.3 Btu/lb.
- O_2 h = 0.26478 T 50.7 Btu/lb.
- H_2O h = 0.57133 T + 898.7 Btu/lb. (including 1048.6 Btu/lb. heat of vaporization)
- Ash h = 0.25 T 20 Btu/lb.

 $T = Temperature ^{\circ}F.$

ANALYSIS OF VOLATILE SOLIDS

12,500 Btu/lb. VS 65.0% Carbon 9.0% Hydrogen 21.0% Oxygen

1.

5.0% Nitrogen

9,500 Btu/lb. VS
 50.0% Carbon
 7.0% Hydrogen
 39.0% Oxygen

4.0% Nitrogen

6,350 Btu/lb. VS
 38.2% Carbon
 7.3% Hydrogen
 54.4% Oxygen
 0.1% Nitrogen

APPENDIX

110

