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ABSTRACT

Municipal waste combustor emission rate estimates
are needed for environmental impact and health risk
assessments, setting operating permit limits, compli-
ance certificates and other purposes. Preparing valid
trace emissions estimates is not straightforward because
the data frequently is not normally distributed and con-
tains below detection limit results. From an emissions
limit perspective, the concern is not the average emis-
sion rate, but rather a low limit with enough margin
that test and CEMS averages (or individual run values)
are unlikely to exceed the limit. Impact assessments
must correctly characterize the emissions so that the
conclusions are valid. This paper presents statistically
valid methods for identifying underlying distributions,
and estimating average emissions and associated limits
given a specified exceedance frequency and statistical
confidence level.

NOMENCLATURE

alpha = significance level; this is the statistical
likelihood that an interval does not
contain the parameter of interest
8c; = coefficient for determining the Confi-
dence Interval that contains the mean
of the data set
8p1m = coefficient for determining the Predic-
tion Interval that contains the average
of the next R replicate test.
8py. = coefficient for determining the Predic-
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tion Interval that contains the next k
runs

coefficient for determining the Predic-
tion Interval that contains all the aver-
ages of the next T tests with R repli-
cates each

coefficient for determining the Toler-
ance Interval that contains a specified
percentage of all future replicates at a
given confidence level

rank (first through N'") of the point in
a rank ordered data set

number of future tests to be included
in an interval at a stated confidence
level

number of runs conducted (n

T*R)
student ¢-distribution statistic for
n—1 degrees of freedom and

1 — alpha probability

coefficient of variance calculated as the
standard deviation divided by the mean
number of data points in the set
number of replicates in a test
proportion of future tests to be in-
cluded in an interval at a stated confi-
dence level

= standard deviation of x

geometric standard deviation of x;
computed by exponentiation of the
standard deviation of the natural loga-
rithm of x

number of tests conducted



UL = either the single detected value or de-
tection limit used in Eq. (4)
X?,_\, aphey = chi square statistic for n — 1 degrees
of freedom and alpha probability
Z, = distance in standard deviations that the
boundary on the normal distribution is
located from the average to encompass
probability p
(x) = mean (arithmetic average) of x
(x), = geometric mean of x; computed by ex-
ponentiation of the arithmetic average
of the natural logarithm of x

%f; = median rank or quantile of the /' data
point
INTRODUCTION

Many engineers are familiar with some statistical
concepts. They frequently do not know, however, that
the commonly taught statistical procedures assume
that the data is taken randomly from a normally distrib-
uted population. When these assumptions are satisfied,
the mean (arithmetic average) and standard deviation
completely describe the data, and intervals can then be
determined which are likely to contain: the data aver-
age (Confidence Limits); the results of a specified num-
ber of future tests (Prediction Limits); or a specified
proportion of all future test results (Tolerance Limits).
These limits provide answers (with a known degree of
certainty) to the following questions:

(a) What limit is likely to bound the next test av-
erage?

(b) What limit is likely to bound the largest individ-
ual run in a future series of tests?

(¢c) What limit is likely to bound the averages for a
specified number of future tests?

(d) What limit is likely to contain a specified per-
centage of all future runs or test averages?

In order for statistical intervals to correctly answer
these questions, the data must either be, or be made to
be, normally distributed. The averaging time or number
of replicates must also be properly accounted.

The examples in this paper use trace metals emissions
data (Appendix A) from testing conducted at the
Southeast Resource Recovery Facility (SERRF) in
1988 and 1989 (TRC) and 1990 (Bell, et al.). The
SERREF facility in Long Beach, California has three
nominal 460 tons per day (TPD) L&C Steinmuller mass
burning waterwall boilers equipped with Selective
Non-Catalytic Reduction (SNCR) and flue gas recircu-
lation (FGR) NO, control, a slaked lime rotary atom-
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izer based spray dryer absorber and reverse air bag-
house for acid gas and particulate control.

HAVING CONFIDENCE A LIMIT WILL BE
MET

Upper statistical limits provide a level below which
the parameter of interest is likely to be found with a
known statistical confidence or probability. That is, if
a test is repeated many times and the upper limit is
calculated at the 5% significance (95% confidence)
level for each test series, then the true value will be
below the calculated upper limit 95 out of 100 times.
It is important to remember that the performance of the
plant does not change as long as the plant is operating
normally. What changes with each test or data analysis
is the estimate of the interval because each estimate is
based on available data. There is always a possibility
that a calculated limit will be exceeded when nothing
has changed from the base data period simply due to
unfortunate coincidence.

Statistical intervals define the exceedance risk based
on measured performance. Different types of intervals
define the limits for different averaging times and moni-
toring requirements.

In general, upper limits are determined by adding
the product of an interval coefficient (g_ ) and the
standard deviation to the mean as shown in Eq. (1).

interval = (x) + g__S

_ (0]
If the data has been transformed to achieve normalcy
before calculating the mean and standard deviation, the
limit calculation should use the transformed mean and
standard deviation. The Eq. (1) result is then mathe-
matically inversed to express the limit in original data
units.

Upper limits are provided, rather than estimates of
bands in which the data is likely to reside, because these
are limits above which measured emissions are not
likely to be found. If the lower limit is desired, simply
subtract the product from the mean.

When deciding how much confidence to have in a
limit or margin to provide, it is important to balance
the cost of an error and the likelihood of setting an
excessively high limit. If an individual test exceeds a
limit, there can be two causes: first, the result may
simply be a statistical aberration; or second, there may
be something wrong with the facility being tested. If an
examination of the plant indicates that there is nothing
wrong, then retesting should yield a result that is below
the limit. Thus. the cost of a tight limit may simply be



the price for retesting. On the other hand, if there is a
perception that a limit should never be exceeded, then
higher confidence levels and periods between likely ex-
ceedances are indicated. There are costs to increasingly
higher limits. From a project perspective, higher limits
create a perception of much larger emissions than actu-
ally will occur. From a regulatory perspective, higher
limits consume greater amounts of the pollutant incre-
ment in attainment areas and require more offsets in
nonattainment areas.

As a general rule, 95% confidence limits balance
the types of statistical errors encountered and 99%
confidence limits leave only a 1% chance of finding
noncompliance when the plant is really meeting a limit.
g— — factors for five different types of intervals are pro-
vided in Appendix C-1 and C-2 for the 95% and 99%
statistical confidence levels. The formulas in Appendix
B can be used to calculate the factors for other confi-
dence levels and conditions.

Confidence Interval for the Mean

The upper Confidence Limit for the mean defines a
level that is likely to be above the population mean. It
is not an estimate of how large an individual test run
or average might be found during any specific test.
Appendix C contains the coefficients (g.;) needed to
estimate the upper Confidence Limit for the mean.

If the problem is to estimate a limit below which
long-term average performance (the population mean)
is likely to be found, a Confidence Limit is used. If the
question being addressed refers to average values, such
as multi-hour block-average CEMS results, then the
block average standard deviation should be used in Eq.
(1). This standard deviation can be estimated using
the factors provided in Appendix C-3. Appendix C-4
provides standard deviation adjustment factors for
different averaging times where the samples are ran-
domly drawn and not block-averaged. This limit ap-
plies to estimating average annual or lifetime facility
emissions based on facility data; it also applies to aver-
age emissions from a group of facilities that have been
tested and shown to be similar provided the test data
is pooled prior to estimating the Confidence Interval.

Correcting test data for sampling (averaging) time is
important if underestimated limits are to be avoided.
For example, if 8-hr sampling time data is used to
establish a minimally acceptable 4-hr permit limit, as
discussed in detail later, the standard deviation used in
Eq. (1) will be underestimated by 25-30%.
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Tolerance Limits that Contain a Specified Data
Percentage

If an interval is needed in which a specified percent-
age of the test results are likely to reside, a Tolerance
Limit is calculated (use g;).

The Tolerance Limit is useful for estimating the
emissions of a new source. Historical data provide a
basis for saying “this is how plants like the proposed
facility perform.” The Tolerance Limit says that, based
on the data, we are statistically confident (say 95%)
that a given percentage (say 99%) of all future plants of
this type will exhibit emissions less than the Tolerance
Limit. Thus, we have a given level of confidence that
the emissions from a proposed plant will be less than
the Tolerance Limit calculated from the performance
of several similar, existing facilities.

Prediction Limit for the Next Tests

If a limit estimate is needed to encompass the average
result of the next set of test runs, the upper bound
Prediction Interval for the Test Mean is the correct
limit (use gg,,,). This upper bound applies when you
are only interested in the results of the next test series
being below a limit (e.g., a contractor with a single
acceptance test responsibility).

The Prediction Interval for kX Future Runs (use gg;,)
provides an upper bound above which any of the indi-
vidual results for & future runs are unlikely to be found.
This interval estimate provides a specified level of cer-
tainty that all scheduled runs are likely to be below the
limit. This applies to a situation where a regulatory
agency sends out test crews to perform a single run
every year and no exceedances are desired over some
future period of time.

The Prediction Interval for the Individual Averages
of T future, R Replicate tests (gp;z7) provides an upper
bound estimate for the averages of a specified number
of future tests which have the same number of repli-
cates. This interval applies when a facility permit re-
quires periodic testing and no exceedances are desired
between permit renewals or over some longer period
such as bond life or operating contract term.

CORRECTLY DESCRIBING THE DATA

The average and standard deviation must describe
the data for the calculation to provide the expected
certainty that the limits will not be exceeded. This
means that the data analysis must discern the nature
of the underlying distribution, transform the data as



necessary to make it normal, and properly handle Be-
low Detection Limit (BDL) test results.

Structuring the Data for Analysis

Data analysis begins with data tabulation. The data
must be correctly transcribed from its original source
and be in consistent, diluent corrected units for the
statistical results to be meaningful. To help understand
the data, it is a good idea to include plant operating
conditions (number of baghouse modules or electro-
static precipitator fields in use, scrubber reagent flows,
etc.), key temperatures and pressures and any unusual
events such as hopper pluggages or intentional off-
design operation. That way, physical and chemical ex-
planations may be able to be developed for any appar-
ently unusual results and nonrepresentative results may
be identified and excluded from the analysis.

Data analysis is facilitated if the detection limit is
preceded by a minus sign when BDL results are re-
corded. This data coding method should not create a
presentation problem since most spreadsheets can be
set to display negative numbers in parentheses. Unlike
the conventional * <” sign, computers readily ignore
the () display and isolate negative numbers. This BDL
coding method is particularly useful if arithmetic aver-
ages using half the detection limit for all BDL are
desired. A simple mathematical test can be written into
a spreadsheet to create a transformed data set made up
of the original value for all positive results and half
the absolute value of negative results. The arithmetic
average of this transformed data set fulfills a half detec-
tion limit for BDL results.

Underlying Distribution

Before accepting that the arithmetic average and
standard deviation correctly characterize the data, it is
necessary to examine the data for normalcy. This is
particularly important if limit calculations which use
the mean and standard deviation are to be physically
meaningful as well as mathematically correct. If nor-
mal statistics are applied to a log normal data set, for
example, the result can be an unachievable permit limit
and incorrect assessment of the environmental impacts
and health risks associated with the emission.

The EPA recommends in SW-846 calculating the
data mean and variance (standard deviation squared)
and comparing the results. If the variance is larger than
the mean, the data is probably not normally distributed
and transformation prior to comparison to standards
is recommended.
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This test assumes that the average and standard devi-
ation can be directly calculated because there are no
BDL results and identifies severely nonnormal data
sets. A more powerful method that automatically ac-
commodates BDL results is the use of probability plots.
Probability plots are prepared by rank ordering the
data, determining the percentage median rank or quan-
tile associated with the rank of each data point and
plotting the data against percentage quantile on special
probability paper. If median rank tables (Lipson and
Sheth, 1973) are not available, the plotting position
(%f,) can be estimated using Eq. (2).

%f, = 100 * (i — 0.375)/(N + 0.25) )
The total number of runs (both those with detected and
BDL results) are used to establish V.

Normally distributed data plot as a straight line on
normal probability paper. The average is located at the
50% probability point and the standard deviation is
one third of the difference between the values plotting
at 7% and 93%. If the line is not straight, other types
of distribution paper can be tried. Figure 1(a) is a log
normal probability plot and Fig. 1(b) is a normal proba-
bility plot of the zinc emissions data from SERRF.
Note that the plot shows a distinct kink on the normal
probability paper and a relatively straight line on the
log normal probability paper. This provides evidence
that the data is not normally distributed but may be
log normally distributed.

BDL data indicates that part of the distribution is
censored. The number of BDL results locate the plot-
ting position of the detected results; but they do not
contribute any direct information about the expected
value of specific individual censored points. The detec-
tion limit is usually plotted for BDL data points since
the expected value of the rank-ordered BDL results
could be distant from the detection limit.

Detection limits occasionally change over time as
sampling and laboratory methods improve. Conse-
quently, a plant emissions data set made up of several
test reports may contain multiple censoring (detection)
levels. For multiple censored data sets, the cleanest
thing to do is to treat all results smaller than the highest
detection limit as missing. If run duration was changed,
however, to improve the detection limit, then BDL
results from the original testing above the new detection
limit contribute no information and should be dis-
carded. For example, consider a data set where the
first series of three test runs results in only one above
detection limits result, so the test duration was ex-
tended for all subsequent runs. If the longer sampling
time results in essentially all above detection limits
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FIG. 1 PROBABILITY PLOTS OF THE ZINC EMISSIONS DATA




results, the two BDL runs from the first series should
probably be treated as not having been performed. The
loss of information from discarding the two runs is
probably smaller than the risk of biasing the average if
there is a reasonable chance that the two runs might
have been above detection limits using the revised pro-
cedure. That is, no one knows where to rank the two
BDL results. They may be below all the subsequent
test results or scattered anywhere among them.

The number of standard deviations associated with
the median rank percentages can be found in a table of
Standard Normal Cumulative Probabilities and plotted
against the rank ordered results. In this case, the mean
is located at Z, = 0, and the standard deviation is the
slope of the straight line. This is equivalent to probabil-
ity plots with Z, replacing %f; as the plotting position.
It can also be implemented in a spreadsheet program
by first using Eq. (2) to determine the percentage rank
order of the data points and the inverse cumulative
probability formula in Appendix B to calculate the
associated Z,. The normal plot is then generated using
the X-Y graphing feature found in many spreadsheets
by plotting each data point against its associated Z,.
From the spreadsheet’s linear regression procedure, the
mean is the intercept and the standard deviation is the
slope of the line calculated using the data points as
the dependent variable and the associated Z,’s as the
independent variable.

Different distribution types can be identified by
transforming the data before plotting. While any trans-
form could be tested using this procedure, log and
square root transformations are most likely to be suc-
cessful since they apply to long, high tailed data (Na-
trella, 1966). The correlation coefficients provided by
most linear regression programs can also be compared
for various data transformations to determine the shape
of the underlying distribution.

If a statistical analysis software package is available,
then more sophisticated analyses are possible. Using
one such program, Fig. 2! was generated for the zinc

! The Mean is the arithmetic average of the data and the Median is
the value that has a %f; equal to 50% (or the average of the closest
values on either side of 50%). The 5% Trim is the arithmetic average
computed with the largest and smallest 5% of the data discarded.
This procedure eliminates potential outliers. For a normal distribu-
tion, the mean, median and 5% Trim are all the same. The STanDard
ERRor is also called the standard deviation of the mean and is the
standard deviation divided by the square root of the number of runs
(Cases) in the data set. The variance is the square of the STanDard
DEViation. For normal distributions, the variance is less than the
mean. The Min., Max., and Range are the smallest and largest data
values and the difference between the largest and smallest value.
The InterQuartile Range indicates where the center half of the data
resides. Skewness is the third moment of the data distribution and
generally has a value less than 0.5-1.2 (depending on statistical sig-
nificance and number of runs) for a normal distribution. S E Skew
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emissions data. In addition to normal plots, detrended
normal plots are provided which show the deviation
between the actual data point and the theoretical value
for each %f; The detrended normal plot should not
display a regular pattern. This examination of the data
provides additional information on the characteristics
of the distribution. Perhaps most important are the
Shapiro-Wilks and K-S (Lilliefors) normalcy tests to
the data. The reported significance is the chance that a
test statistic as large as calculated would have been
found if the (transformed) data were normal. If the
likelihood is small, say less than 5%, the data is proba-
bly not normally distributed. Comparing the normal
and log normal assumptions for the zinc data, there
is less than a 1% chance that the data is normally
distributed; however, a log normal distribution would
have resulted in the observed data set about half the
time.

Average and Standard Deviation

Hand calculators, spreadsheet programs and statisti-
cal analysis packages usually calculate averages and
standard deviations. Typically, only statistical analysis
packages use special mathematical algorithms to avoid
machine rounding errors. As a result, an estimated
mean and standard deviation is likely to be slightly
different depending on the equipment used to make the
calculation. This effect can be seen in Appendix A.
The half detection limit BDL substituted averages and
standard deviations were calculated using internal
spreadsheet functions. The Normal Distribution aver-
ages and standard deviations were calculated using a
statistical analysis package. For the trace metals sets
without BDL results, the averages and standard devia-
tions should be identical since no substitutions or esti-
mates are involved. The averages are generally compa-
rable, but there are third digit differences (for this data
set) in the standard deviations. Even with the 64 bit
arithmetic used to perform these calculations, steps
need to be taken to minimize rounding errors.

When BDL results are present, correct data handling
is mandatory. If the BDL results are simply ignored
and the “detects” averaged, the average will be too high
and the standard deviation too small, both by unknown
amounts. Even if the BDL results are included but
taken as zero, half the detection limit or the detection
limit, the average and standard deviation remain biased
by an unknown amount. The best approach is to esti-

provides an estimate of the standard error for the skewness. The
Kurtosis is the fourth moment of the data and S E Kurt is the
standard error of the kurtosis.
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mate the likely values for BDL data using the proce-
dure described in Rigo (1989), Travis and Land (1990),
and Helsel (1990). Expected values for the rank ordered
BDL results are estimated using the mean, standard
deviation determined during the distribution checking
procedure and Z, associated with each BDL value us-

ing Eq. (3):

BDL,,, = mean + Z, * standard deviation )
If the data was transformed before determining the
mean and standard deviation, inverse the transforma-
tion after calculating BDL,,. For example, square
BDL.,,, if the data was square root transformed before
analysis; calculate the exponential of BDL,, if the natu-
ral logarithm of the data was analyzed.

The validity of the transformation and filling process
can be determined by repeating the normal plotting and
distribution analysis procedures with the filled data set.
If the correct underlying distribution has been used to
calculate BDL,,,, then the estimated data should appear
to be part of the complete data set. If an incorrect
underlying distribution has been assumed, then a dis-
tinct kink or bowing in the plot will demark the esti-
mated to measured data transition. If, however, policy
requires the use of an arithmetic average regardless of
the nature of the underlying distribution, then the fill-
ing process will result in the best estimate that can be
made for the data average (Helsel, 1990).

If the data is made up of two distinct groups and the
data is not partitioned before analysis, the calculated
standard deviation may be seriously in error. Limit or
emission rate projections based on probabilities outside
the range of %f; covered by the data are likely to be as
much as three orders of magnitude high for data sets
made up of near detection limits data and high values.
Data grouping is necessary if the normal plots indicate
that two straight lines are present, especially if they
appear to be off-set rather than intersecting. If the data
appears to be best described by two straight lines, the
low value group should be regressed against Z, while
treating the data in both the high value group and
BDL as missing to obtain estimates for the mean and
standard deviation of the low value data group. Some
of the trace emissions data in Appendix A exhibits this
characteristic. Means and standard deviations used to
estimate the Upper Tolerance Limit provided in Ap-
pendix A were based on the group data.

While the intuitive validity of the analysis declines
as more than half the data is censored, the mean can
be calculated if an estimate of the coefficient of variance
can be obtained from previous tests or by assuming that
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a particular material behaves like another for which
coefficients of variance are available. For example, if
the data set contains information on a relatively volatile
metal like lead, that coefficient of variance could be
used to estimate the mean of another relatively volatile
metal like arsenic where only one run might have been
above detection limits. The estimate is made using Eqgs.
(4) and (5):

(x) =UL/(1 + Z,,* CV) “

S=CV* (x) )

If there are no detected values, applying the above
equation to detection limits yields an upper bound esti-
mate for the mean. If the mean is actually any larger
than the Eq. (4) value, there should have been at least
one above detection limit result. Of course, the mean
might be substantially less than the estimate or the
material completely absent.

Averaging Time and Number of Replicates

The average emission rate for a process is not affected
by the length of sampling or the number of replicates
averaged. This is because the average (arithmetic, geo-
metric mean, etc. as appropriate) is the same whether
we average results that are themselves made up of aver-
ages of data subsets or all the data is individually used.

The standard deviation, however, changes with aver-
aging time or number of samples that are averaged. To
illustrate the point, a simulation can be done which
uses a known mean and standard deviation to generate
a random set of data points with that mean and stan-
dard deviation. Taking the individual data points as ““1
hr” data, the effect of 3-, 4-, 8- and 24-hr sampling or
averaging times can be shown by making up additional
data sets that average a number of hours together. Fig-
ure 3 is a normal probability chart displaying those
results. As can be seen, the mean remains unchanged,
but the slope (standard deviation) changes with differ-
ent averaging times.

One of the benefits of having a normal distribution,
according to statistical theory (Mason, et al, 1989), is
that averages of random samples are also normally
distributed with the same mean as the parent popula-
tion, but the standard deviation is reduced by the
square root of the number of samples used in each
average. This means that if we know the mean and
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standard deviation for a given sampling time (say 8-hr
samples) and we want to compare the results to a 3-hr
standard, the average can be directly compared. But, if
the intention is to develop a not to be exceeded limit
or standard, then the standard deviation must be cor-
rected for sampling time or number of replicates before
calculating the limit.

While statistical theory says that averaging time
standard deviations should be related by the square
root of the number of samples involved or sampling
period, an exponent of 0.4 instead of 0.5 provides a
more consistent estimate of the change in standard
deviation when hourly data is block averaged. For ex-
ample, if sixteen 8-hr duration test results are available,
the mean is the same as for a 3-hr test duration, but
the standard deviation for the 3-hr tests is 1.5 times as
large as that apparent from the test data. If the averag-
ing time were to be reduced to a one hour basis that
matches dispersion modeling emission rate input re-
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quirements, then the standard deviation increases to
2.3 times that which is apparent from the 8-hr data.

In addition, while the standard deviation of the un-
derlying distribution is constant, the data based esti-
mate is exactly that, an estimate. To be conservative, it
is advisable to determine the Upper Confidence Limit
for the standard deviation and use that value in lieu of
the data estimate when correcting for differences in
sampling times or number of replicates. For the previ-
ous example, the 1-hr standard deviation is 3.3 times
the 8-hr average standard deviation, including the un-
certainty of the standard deviation as well as the aver-
aging time effect.

Tabulations of the factors for making this correction
are provided in Appendices C-3 and C-4 for the 0.4
power and square root of the number of samples respec-
tively. Two sets of factors are provided to enable the
conversion of data with a sampling time or number of
replicates greater than 1, to a 1-hr (single run) base
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FIG. 4 UPPER TOLERANCE LIMITS CORRESPONDING TO ONE EXCEEDANCE PER CALENDAR PERIOD AS A
FUNCTION OF BLOCK AVERAGING TIME AND STATISTICAL CONFIDENCE LEVEL

and to go from a 1-hr averaging time basis to longer
averaging times. These factors should be used in con-
verting stack sampling results into hourly emission rate
data for use in ambient dispersion analysis if upper
limits are used. They can also be used to estimate com-
pliance limits for 4-, 8- and 24-hr Continuous Emissions
Monitoring System averaging times given 1-hr data.
The effect of averaging time can be seen in Fig. 4.
Figure 4 shows the upper Tolerance Limit that corres-
ponds to %f; for a given frequency of exceedances based
on the 1-hr log normal mean (4.243 log units) and
standard deviation (0.192 log units) for Carbon Monox-
ide (PPMdv @ 7% O,) emissions at SERRF. %jf; was
determined using Eq. (1) for i equals 1 and the denomi-
nator equal to the number of averaging time periods in
the calendar period. The calculated limits are provided
in Appendix D for 95% and 99% confidence levels
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based on both normal and log normal distribution as-
sumptions. The standard deviation was also corrected
for block averaging times.

It is important to realize that in this analysis the
process creating the emissions is assumed to be station-
ary. That is, the fundamental process causing the emis-
sions does not change and its long term performance is
characterized by the mean and standard deviation. The
achievable emission limit changes, however, depending
upon how often an exceedance is acceptable.

Given that the average Carbon Monoxide emissions
are about 71 PPMdv @ 7% O,, if only one exceedance
every 20 years is desired at the 95% confidence level,
the permit limit needs to be 172 PPMdv @ 7% O,
(about 2% times the average) to avoid violations due to
the inherent variability in the process. If the averaging
time is increased to 24 hr, the permit limit only needs



to be 86 PPMdv @ 7% O, (about 1.2 times than the
average).

Both these limits apply to the same process! The only
difference is the averaging time. Further, since there is
always some chance that a properly operating process
will naturally generate a high emission rate, it is pru-
dent that limitations either spell out an acceptable ex-
ceedance frequency (like the “second high” limitation
found in some national primary and secondary ambient
air quality standards) or the limit include a margin for
statistical aberrations.

The importance of using the proper underlying dis-
tribution is emphasized by the Carbon Monoxide
CEMS limit example. If the CEMS data were treated
as being normally distributed instead of log normally
distributed, the 24-hr averaging time limit is practically
unaffected (due to operation of the central limit theo-
rem), but the 1-hr averaging time limit would have
been 30 PPMdv @ 7% O, understated. Improper data
analysis can lead to the specification of a limit that will
be exceeded much more than expected. Reviewing the
tables in Appendix D shows that choosing to be 99%
instead of 95% confident in the limit has a small effect.

CONCLUSION

The methods provided enable the correct character-
ization of emissions test data. Data taken under one set
of test conditions (run duration and number of runs in
a test) can be adjusted to other test conditions. Limits
which are unlikely to be exceeded at a given statistical
confidence level can be determined.

These methods enable anyone setting limits to esti-
mate the likelihood of exceeding a specified limit when
there is nothing wrong with the plant. This can result
in correctly wording permits to preclude the appear-
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ance of permit violations when noncompliance has not
actually occurred.
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APPENDIX B

The equation for the Prediction Interval for T future
R Replicate tests is by this author following the sugges-
tion in Hahn (1969). The balance of the equations for
estimating statistical intervals were brought together
by Hahn (1970a, 1970b). The equations for estimating
Z,, tu—1, aiphay a0 X2,y aionay Were taken from Abra-
mowitz and Stegun (1965).

Tables of several of these intervals are available in
standard statistical references (Natrella, 1966). The fac-
tor for the confidence interval for the mean is usually
not tabulated because of the ease with which it can
be estimated given a table of Student-t statistics. The
Tolerance Limit is also frequently tabulated for two
sided Confidence Limits but statistical literature must
be searched to find tables of one sided Tolerance Limits.
A table to generate two-sided Prediction Intervals can
be found in Wadsworth (1990).

The published interval tables, however, do not usu-
ally apply to numbers of tests, numbers of replicates or
numbers of runs that are typical of stack testing. The
published tables also ignore the problem of run dura-
tions and apply to uninteresting numbers of future tests
and runs. Finally, the published tables are usually for
two sided intervals and the usual emissions estimating
problem involves finding a limit that is not likely to be
exceeded (one-sided limit).

The following equations provide the means of calcu-
lating the factors applicable to specific problems:

Upper Confidence Interval Limit for the Mean
Y,
8cr = (l/n) L t(n—l. 1—alpha) (B-l)
Upper Prediction Interval Limit for X Future Runs
(B-2)

)
g = (1 + 1/’1)/2 * L(n—1, 1—alphask)

Upper Prediction Interval Limit for the Next Test
Mean

gom = (/R + 1/m)%* ey 1wy (B-3)

Upper Prediction Interval for T Future Replicate
Means

)
gerr = (/R + 1/”)/2 * L(n—1. 1—aipha/[T*R]) (B-4)
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Upper Tolerance Limit

gr=12,+ (Z? — a* b)*a (B-5)
where

a=1-— [Z(l—alpha)]z/[z *n—2]

b = sz - Z(l—alpha)z/n

Upper Confidence Limit on the Standard Deviation

gso = (0 = /X%y une) (B-6)

and the factor to correct for R replicates or test dura-
tion in-house is ggp divided by R" or RO* (depending
on whether the correction is for random averages or
block averages) to convert the standard deviation to a
one hour result.

In order to use the above formulas, estimates of the
Student ¢-distribution for significance levels (values of
alpha) which are not found in common tables are
needed. Also, many cumulative normal probability ta-
bles do not contain Z, of interest and interpolation is
necessary.

A rational approximation for Z, given the fraction
of the normal curve below p (%f; expressed as a frac-
tion) such that 0 < p < 0.5 is:

Z, =t — (230753 + 0.27061¢)/

(1 + 0.99229t + 0.04481#%) (B-7)
where: .
t = {—2.0*In(p)} 2

For p greater than 0.5, compute the above for:
p=1—p and
Z,=-2,
An asymptotic expansion for the inverse Student-z
distribution function, which uses Z, corresponding to
alpha, is:

t,=2Z,+ G (Z)/(n — 1)
+ G, (Z)/(n — 1)* +
Gy (Z)/(n — 1)) + G, (Z)/(n — 1)} (B-8)
where:
G\ = (2 + 2)/4

G,(2) = (52° + 162° + 32)/96
Gy(2) = (327 + 1925 + 172> — 152)/384



G(2) = (792° + 7767 + 148225 — 19202 — 945z)/
92160

Numerical approximations for the Chi-Square distri-
bution are only available for more than 30 degrees of
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freedom. Since one is usually interested in tabulated
confidence levels (alpha levels of 5%, 2.5%, 1% and
0.1%), a need to generate untabulated values is un-
likely. Appropriate values can be found in standard
statistical references (Natrella, 1966).



APPENDIX C

APPENDIX C-1 FACTORS FOR DETERMINING UPPER CONFIDENCE, TOLERANCE AND PREDICTION LIMITS AT
THE 5% SIGNIFICANCE LEVEL (95% Confidence) AND 95% PROBABILITY OF CONTAINING ALL FUTURE

RESULTS
PREDICTION LIMITS
FUTURE 95%
PROBAB- | CONFID-|| CONFID- 95% MEAN OF
DATABASE | TESTS | REPS. | RUNS ILITY ENCE | ENCE | TOLERANCE| NEXT | TFUTURE | k FUTURE
LIMIT LIMIT TEST TESTS TESTS
g g g g g
n T R k P alpha Cl T Plm PIRT Plk
K T 3 3 95% S%o 168 957 238 331 500
2 6 6.09 8.62
3 9 7.41 10.47
4 12 848 12.00
5 15 9.41 13.31
20 60 17.40 24.60
6 1 3 3 95% 5% 0.82 367 1.42 2.06 3.15
2 6 2.50 3.82
3 9 278 424
4 12 298 4.56
5 15 3.15 4.81
20 60 433 6.62
9 1 3 3 95% % 0.62 2.99 124 1.71 271
2 6 2.01 3.18
3 9 2.19 347
4 12 232 367
5 15 242 383
20 60 3.10 4.90
12 1 3 3 95% % 052 27 116 157 253
2 6 1.82 294
3 9 197 317
4 12 2,07 334
5 15 2.15 3.47
20 60 2.67 431
15 1 3 3 95% % 045 2.54 1.11 1.49 244
2 6 172 2.81
3 9 1.85 3.02
4 12 1.94 317
5 15 2,01 329
20 60 2.46 4.01
18 1 3 3 95% % 0.41 243 1.08 1.44 238
2 6 1.66 273
3 9 1.78 293
4 12 1.86 3.07
s 15 193 3.18
.20 60 2.33 3.84
21 1 3 3 95% % 038 235 1.06 1.41 2.34
2 6 1.61 2.68
3 9 173 2.87
4 12 1.81 3.00
5 15 1.87 3.10
20 60 224 372
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APPENDIX C-2 FACTORS FOR DETERMINING UPPER CONFIDENCE, TOLERANCE AND PREDICTION LIMITS AT
THE 1% SIGNIFICANCE LEVEL (99% Confidence) AND 99% PROBABILITY OF CONTAINING ALL FUTURE

RESULTS
PREDICTION LIMITS
FUTURE 99%
PROBAB- | CONFID-|| CONFID- 9% MEAN OF
DATABASE | TESTS | REPS. | RUNS ILITY ENCE ENCE | TOLERANCE| NEXT | TFUTURE | k FUTURE
LIMIT LIMIT TEST TESTS TESTS
g g g g g

n T R k P alpha CI T Plm PIRT Plk
3 T 3 3 9% 1% 304 1387 3357 941 13.31
2 6 12.88 18221

3 9 1538 2175

4 12 17.40 24.60

5 15 19.12 27.04
20 60 33.39 47.22

6 1 3 3 9% 1% 137 9,07 2.38 315 4.81
2 6 3n 567

3 9 4.06 6.21

4 12 433 6.62

5 15 4.55 6.95

20 60 6.10 9.32

9 1 3 3 99% 1% 097 5.78 193 2.42 383
2 6 2.75 435

3 9 2.95 467

4 12 3.10 4.90

5 15 321 5.08

20 60 3.98 6.30

12 1 3 3 99% 1% 0.79 4.81 176 2.15 347
2 6 241 3.88

3 9 2.56 413

4 12 267 431

5 15 276 444

20 60 331 5.33

15 1 3 3 9% 1% 0.68 432 1.66 2.01 329
2 6 223 3.65

3 9 236 3.86

4 12 2.46 4.01

5 15 2.53 413

20 60 298 487

18 1 3 3 99% 1% 0.61 4.03 1.60 193 318
2 6 213 3.51

3 9 225 370

4 12 2.33 384

5 15 2.39 394

20 60 2.79 4.60

21 1 3 3 99% 1% 0.55 382 1.56 1.87 3.10
2 6 2.06 341

3 9 2.17 359

4 12 224 n

5 15 2.30 3.82

20 60 267 443
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APPENDIX C-3 FACTORS FOR DETERMINING THE
STANDARD DEVIATION APPLICABLE TO ONE BLOCK
AVERAGING TIME BASIS GIVEN ANOTHER

FACTORS TO CONVERT SAMPLE PERIOD STANDARD DEVIATIONS
TO EQUIVALENT ONE HOUR STANDARD DEVIATIONS
AT THE 95% CONFIDENCE LEVEL

BLOCK AVERAGES
[NOMBER OF
RUNS IN SAMPLE RUN TIMES
DATA BASE 2 3 4 8 24
3, 5.90 6.94 719 10.27 15.94
4 3.86 4.54 5.10 6.73 10.44
S 3.13 3.68 4.13 5.45 8.46
6 275 324 3.63 479 743
il 252 297 333 439 6.82
8 237 279 313 4.13 6.40
9 226 2.66 298 393 6.10
10 217 2.55 2.86 378 5.86
1 2.10 247 n 3.66 5.68
12 2,05 241 270 3.56 5.53
13 2.00 235 2.64 348 5.40
14 196 231 2.59 341 5.30
15 193 227 2.54 335 520
16 1.90 223 2.50 330 5.12
17 1.87 220 247 326 5.05
18 1.85 217 244 322 4.9
19 183 215 2.41 318 4.94
20 181 2.13 239 3.15 4.89

FACTORS TO CONVERT ONE HOUR STANDARD DEVIATIONS
TO EQUIVALENT AVERAGING PERIOD STANDARD DEVIATIONS
AT THE 95% CONFIDENCE LEVEL
BLOCK AVERAGES

[NOMBER OF
RUNS IN SAMPLE RUN TIMES

DATA BASE 2 3 4 8 24
3 327 2.73 2.40 175 1.07
4 214 179 1157 115 0.70
L] 174 145 127 0.93 0.57
6 1.53 127 112 0.82 0.50
7 140 117 1.03 0.75 0.46
8 131 110 0.96 0.70 043
9 125 104 092 0.67 0.41
10 120 1.00 0.88 0.64 0.39
1 117 097 0.85 0.62 0.38
12 114 095 0.83 0.61 037
13 11 092 0.81 0.59 0.36
14 1.09 0.91 0.80 0.58 0.36
15 1.07 0.89 0.78 0.57 0.35
16 1.05 0.88 0.77 0.56 0.34
17 1.04 0.86 0.76 0.56 0.34
18 103 0.85 075 0.55 0.34
19 1.01 084 0.74 0.54 033 |
20 1.00 0.84 0.73 0.54 0.33
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APPENDIX C-4 FACTORS FOR DETERMINING THE
STANDARD DEVIATION APPLICABLE TO ONE
RANDOM SAMPLE AVERAGING TIME BASIS GIVEN
ANOTHER

FACTORS T O CONVERT SAMPLE PERIOD STANDARD DEVIATIONS
TO EQUIVALENT ONE HOUR STANDARD DEVIATIONS
AT THE 95% CONFIDENCE LEVEL

RANDOM AVERAGES
[NUMBER OF
RUNS IN SAMPLE RUN TIMES
DATA BASE 2 3 4 8 24
3 6.32 7.5 894 12.65 2191
4 414 507 5.86 828 14.34
s 336 41 475 671 11.63
6 295 361 417 5.90 1022
7 21 331 3.83 541 9.37
8 2.54 3.1 3.59 5.08 8.80
9 242 296 342 484 839
10 232 285 329 465 8.05
11 225 276 3.19 4.51 7.80
12 219 2.69 310 439 7.60
13 2.14 262 3.03 428 7.42
14 2.10 257 297 420 7.28
15 2.06 2.53 292 4.13 7.15
16 203 249 287 407 7.04
17 2.01 2.46 284 4.01 6.95
18 198 2.43 2.80 396 6.86
19 1.9 2.40 277 392 6.78
20 1.94 237 274 3.88 6.71

FACTORS TO CONVERT ONE HOUR STANDARD DEVIATIONS
TO EQUIVALENT AVERAGING PERIOD STANDARD DEVIATIONS
AT THE 95% CONFIDENCE LEVEL

RANDOM AVERAGES
TNUMBER OF
RUNS IN SAMPLE RUN TIMES

DATA BASE 2 3 4 8 24
3 3.16 2.58 224 1.58 0.91

4 207 169 1.46 1.04 0.60

s 1.68 1.37 119 0.84 0.48

6 147 120 1.04 0.74 0.43

7 135 110 0.9 0.68 039

8 127 1.04 0.90 0.64 0.37

9 121 099 086 0.61 035

10 116 095 0.82 0.58 0.34

11 113 092 0.80 0.56 033

12 110 0.90 0.78 055 032

13 1.07 0.87 0.76 0.54 031

14 1.05 0.86 0.74 0.53 0.30

15 1.03 0.84 0.73 0.52 0.30

16 1.02 0.83 0.72 0.51 029

17 1.00 0.82 0.71 0.50 0.29

18 0.9 0.81 0.70 0.50 0.29

19 098 0.80 0.69 0.49 0.28

20 097 0.79 0.69 0.48 0.28




APPENDIX D

APPENDIX D-1 FACTORS AND CALCULATION OF UPPER TOLERANCE LIMITS CORRESPONDING TO ONE
EXCEEDANCE PER CALENDAR PERIOD — 1-hr BLOCK AVERAGE DATA

ONE BOUR AVERAGING TIME

exceedance mean | std dev statistical limit
frequenc log normal distribution n P confidence UTL PPMdv
'@_ZW "’ETFLﬂﬁL 1 ; 734 0.074227 | 095 2.054 103
weekly 4.243 0.192 734 0.996285 0.95 2.814 119
monthly 4.243 0.192 734 0.999144 0.95 3.292 131
yearly 4.243 0.192 734 0.999929 0.95 3.988 150

5 years 4.243 0.192 734 0.999986 0.95 4.386 162

10 years 4.243 0.192 734 0.999993 0.95 4.547 167

15 years 4.243 0.192 734 0.999995 0.95 4.639 170

20 vears 4.243 0.192 734 0.9999986 0.95 4.703 172

normal djstribution
daily %TH ~ 15.276 734 0.974227 0.95 2.054 102

weekly 70.915 15.276 734 0.996285 0.95 2814 114
monthly 70915 15.276 734 0.999144 0.95 3.292 121
yearly 70915 15.276 734 0.999929 0.95 3.988 132
5 years 70915 15.276 734 0.999986 0.95 4.386 138
10 years 70915 15.276 734 0.999993 0.95 4.547 140
15 years 70915 15.276 734 0.999995 0.95 4.639 142
20 years 70.915 15.276 734 0.999996 0.95 4.703 143
exceedance mean | std dev statistical
frequenc log normal distribution n P confidence UTL limit
my 4243 0.192 734 0.074227 0.99 2.101 104
weekly 4.243 0.192 734 0.996285 0.99 2.874 121
monthly 4.243 0.192 734 0.999144 0.99 3.360 133
yearly 4.243 0.192 734 0.999929 0.99 4068 - 152
5 years 4.243 0.192 734 0.999986 0.99 4473 164
10 years 4.243 0.192 734 0.999993 0.99 4.637 170
15 years 4.243 0.192 734 0.999995 0.99 4.731 173
20 years 4.243 0.192 734 0.999996 0.99 4.796 175
normal djstribution
daily 70.91 15276 734 0.974227 0.99 2.101 103
weekly 70.915 15.276 734 0.996285 0.99 2.874 115
monthly 70915 15.276 734 0.999144 0.99 3.360 122
yearly 70915 15.276 734 0.999929 0.99 4.068 133
5 years 70915 15.276 734 0.999986 0.99 4473 139
10 years 70915 15.276 734 0.999993 0.99 4.637 142
15 years 70.915 15.276 734 0.999995 0.99 4731 143
20 _years 70.915 15.276 734 0.999996 0.99 4.796 144
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APPENDIX D-2 FACTORS AND CALCULATION OF UPPER TOLERANCE LIMITS CORRESPONDING TO ONE
EXCEEDANCE PER CALENDAR PERIOD — 4-hr BLOCK AVERAGE DATA

FOUR HOUR AVERAGING TIME

exceedance mean | std dev statistical limit
frequenc log normal gistribution _n P confidence UTL PPMdv
H:iiy 424 111 734 0.900000 0.95 1.365 81
weekly 4.243 0.110 734 0.985207 0.95 2.292 90
monthly 4.243 0.110 734 0.996580 0.95 2.843 95
yearly 4.243 0.110 734 0.999715 0.95 3615 104
5 years 4.243 0.110 734 0.999943 0.95 4.045 109
10 years 4.243 0.110 734 0.999971 0.95 4218 111
15 years 4.243 0.110 734 0.999981 0.95 4317 112
20 vears 4.243 0.110 734 0.999986 0.95 4.386 113
normal djstribution
daily 70.915 8774 734 0.900000 0.95 1.365 83
weekly 70915 8.774 734 0.985207 0.95 2.292 91
monthly 70915 8.774 734 0.996580 0.95 2.843 96
yearly 70915 8.774 734 0.999715 0.95 3615 103
5 years 70915 8.774 734 0.999943 0.95 4.045 106
10 years 70915 8.774 734 0.999971 0.95 4218 108
15 years 70.915 8.774 734 0.999981 0.95 4317 109
20 years 70.915 8.774 734 0.999986 0.95 4.386 109
exceedance mean [ std dev statistical
frequency log normal distribution n P confidence UTL limit
daily 4.243 0.192 734 0.900000 0.99 1.401 91
weekly 4.243 0.192 734 0.985207 0.99 2.343 109
monthly 4.243 0.192 734 0.996580 0.99 2.903 122
yearly 4.243 0.192 734 0.999715 0.99 3.688 141
5 years 4.243 0.192 734 0.999943 0.99 4.126 154
10 years 4.243 0.192 734 0.999971 0.99 4303 159
15 years 4.243 0.192 734 0.999981 0.99 4.403 162
20 4243 0.192 734 0.999986 0.99 4473 164
normal g'stribution
daily 70915 15.276 734 0.900000 0.99 1.401 92
weekly 70915 15.276 734 0.985207 0.99 2.343 107
monthly 70915 15.276 734 0.996580 0.99 2.903 115
yearly 70915 15.276 734 0.999715 0.99 3.688 127
5 years 70915 15.276 734 0.999943 0.99 4.126 134
10 years 70915 15.276 734 0.999971 0.99 4.303 137
15 years 70915 15.276 734 0.999981 0.99 4.403 138
20 years 70.915 15.276 734 0.999986 0.99 4.473 139

291



APPENDIX D-3 FACTORS AND CALCULATION OF UPPER TOLERANCE LIMITS CORRESPONDING TO ONE
EXCEEDANCE PER CALENDAR PERIOD — 24-hr BLOCK AVERAGE DATA

TWENTY FOUR HOUR AVERAGING TIME

exceedance mean | std dev statistical limit
Mmencz log normal g:=s tribution n P confidence UTL PPMdv

daily 424 0.054 734 0.500000 0.95 0.081 70

weekly 4.243 0.054 734 0.913793 0.95 1.450 75

monthly 4.243 0.054 734 0.979620 0.95 2.157 78

yearly 4.243 0.054 734 0.998289 0.95 3.075 82

5 years 4.243 0.054 734 0.999658 0.95 3.563 84

10 years 4.243 0.054 734 0.999829 0.95 3.756 85

15 years 4.243 0.054 734 0.999886 0.95 3.865 86

20 vears 4.243 0.054 734 0.999914 0.95 3.941 86

normal d'Etribution

daily 70915 4285 734 0.500000 0.95 0.061 71

weekly 70.915 4285 734 0.913793 0.95 1.450 77

monthly 70915 4285 734 0.979620 0.95 2.157 80

yearly 70915 4.285 734 0.998289 0.95 3.075 84

5 years 70915 4.285 734 0.999658 0.95 3.563 86

10 years 70915 4285 734 0.999829 0.95 3.756 87

15 years 70.915 4.285 734 0.999886 0.95 3.865 a7

20 years 70.915 4.285 734 0.999914 0.95 3.941 88

exceedance mean | std dev statistical

frequency log normal distribution n P confidence UTL limit

daily 4243 0.192 734 0.500000 0.99 0.086 71

weekly 4243 0.192 734 0.913793 0.99 1.488 93
monthly 4.243 0.192 734 0.979620 0.99 2.206 1086
yearly 4.243 0.192 734 0.998289 0.99 3.138 127

5 years 4.243 0.192 734 0.999658 0.99 3.635 140

10 years 4243 0.192 734 0.999829 0.99 3.832 145

15 years 4243 0.192 734 0.999886 0.99 3.943 148

1 20 years 4243 0.192 734 0.999914 0.99 4.020 151

_ normal distribution

daily 70.915 15.276 734 0.500000 0.99 0.086 72

weekly 70.915 15.276 734 0.913793 0.99 1.488 94
monthly 70915 15.276 734 0.979620 0.99 2.206 105
yearly 70.915 15.276 734 0.998289 0.99 3.138 119

5 years 70915 15276 734 0.999658 0.99 3.635 126

10 years 70915 15276 734 0.999829 0.99 3.832 129

15 years 70915 15.276 734 0.999886 0.99 3.943 131

20 _years 70915 15.276 734 0.999914 0.99 4.020 132
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