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ABSTRAcr 

Municipal waste combustor emission rate estimates 
are needed for environmental impact and health risk 
assessments, setting operating permit limits, compli­
ance certificates and other purposes. Preparing valid 
trace emissions estimates is not straightforward because 
the data frequently is not normally distributed and con­
tains below detection limit results. From an emissions 
limit perspective, the concern is not the average emis­
sion rate, but rather a low limit with enough margin 
that test and CEMS averages (or individual run values) 
are ¥Jllikely to exceed the limit. Impact assessments 
must correctly characterize the emissions so that the 
conclusions are valid. This paper presents statistically 
valid methods for identifying underlying distributions, 
and estimating average emissions and associated limits 
given a specified exceedance frequency and statistical 
confidence level. 

NOMENCLATURE 

alpha = significance level; this is the statistical 
likelihood that an interval does not 
contain the parameter of interest 

gel = coefficient for determining the Confi­
dence Interval that contains the mean 
of the data set 

gPlm = coefficient for determining the Predic­
tion Interval that contains the average 
of the next R replicate test. 

gPIk = coefficient for determining the Predic-
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tion Interval that contains the next k 
runs 

gPIRT = coefficient for determining the Predic­
tion Interval that contains all the aver­
ages of the next T tests with R repli­
cates each 

gT = coefficient for determining the Toler­
ance Interval that contains a specified 
percentage of all future replicates at a 
given confidence level 

i = rank (first through Nth) of the point in 
a rank ordered data set 

k = number of future tests to be included 
in an interval at a stated confidence 
level 

n = number of runs conducted (n 
T*R) 

t(n-I. I-alpha) = student t-distribution statistic for 
n - 1 degrees of freedom and 
1 - alpha probability 

CV = coefficient of variance calculated as the 
standard deviation divided by the mean 

N = number of data points in the set 
R = number of replicates in a test 
P = proportion of future tests to be in­

cluded in an interval at a stated confi­
dence level 

S" = standard deviation of x 
Sg" = geometric standard deviation of x; 

computed by exponentiation of the 
standard deviation of the natural loga­
rithm of x 

T = number of tests conducted 



UL = either the single detected value or de­
tection limit used in Eq. (4) 

X2(n_ I, alpha) = chi square statistic for n - 1 degrees 
of freedom and alpha probability 

Zp = distance in standard deviations that the 
boundary on the normal distribution is 
located from the average to encompass 
probability p 

(x) = mean (arithmetic average) of x 
(x) g = geometric mean of x; computed by ex­

ponentiation of the arithmetic average 
of the natural logarithm of x 

%J; = median rank or quantile of the Z'th data 
point 

INTRODUCI10N 

Many engineers are familiar with some statistical 
concepts. They frequently do not know, however, that 
the commonly taught statistical procedures assume 
that the data is taken randomly from a normally distrib­
uted population. When these assumptions are satisfied, 
the mean (arithmetic average) and standard deviation 
completely describe the data, and intervals can then be 
determined which are likely to contain: the data aver­
age (Confidence Limits); the results of a specified num­
ber of future tests (Prediction Limits); or a specified 
proportion of all future test results (Tolerance Limits). 
These limits provide answers (with a known degree of 
certainty) to the following questions: 

(a) What limit is likely to bound the next test av­
erage? 

(b) What limit is likely to bound the largest individ­
ual run in a future series of tests? 

(c) What limit is likely to bound the averages for a 
specified number of future tests? 

(d) What limit is likely to contain a specified per­
centage of all future runs or test averages? 

In order for statistical intervals to correctly answer 
these questions, the data must either be, or be made to 
be, normally distributed. The averaging time or number 
of replicates must also be properly accounted. 

The examples in this paper use trace metals emissions 
data (Appendix A) from testing conducted at the 
Southeast Resource Recovery Facility (SERRF) in 
1988 and 1989 (TRC) and 1990 (Bell, et al.). The 
SERRF facility in Long Beach, California has three 
nominal 460 tons per day (TPD) L&C Steinmuller mass 
burning waterwall boilers equipped with Selective 
Non-Catalytic Reduction (SNCR) and flue gas recircu­
lation (FGR) NOx control, a slaked lime rotary atom-
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izer based spray dryer absorber and reverse air bag­
house for acid gas and particulate control. 

HAVING CONFIDENCE A LIMIT WILL BE 

MET 

Upper statistical limits provide a level below which 
the parameter of interest is likely to be found with a 
known statistical confidence or probability. That is, if 
a test is repeated many times and the upper limit is 
calculated at the 5% significance (95% confidence) 
level for each test series, then the true value will be 
below the calculated upper limit 95 out of 100 times. 
It is important to remember that the performance of the 
plant does not change as long as the plant is operating 
normally. What changes with each test or data analysis 
is the estimate of the interval because each estimate is 
based on available data. There is always a possibility 
that a calculated limit will be exceeded when nothing 
has changed from the base data period simply due to 
unfortunate coincidence. 

Statistical intervals define the exceedance risk based 
on measured performance. Different types of intervals 
define the limits for different averaging times and moni­
toring requirements. 

In general, upper limits are determined by adding 
the product of an interval coefficient (g __ ) and the 
standard deviation to the mean as shown in Eq. (1). 

interval = (x) + g __ S (1) 

If the data has been transformed to achieve normalcy 
before calculating the mean and standard deviation, the 
limit calculation should use the transformed mean and 
standard deviation. The Eq. (1) result is then mathe­
matically inversed to express the limit in original data 
units. 

Upper limits are provided, rather than estimates of 
bands in which the data is likely to reside, because these 
are limits above which measured emissions are not 
likely to be found. If the lower limit is desired, simply 
subtract the product from the mean. 

When deciding how much confidence to have in a 
limit or margin to provide, it is important to balance 
the cost of an error and the likelihood of setting an 
excessively high limit. If an individual test exceeds a 
limit, there can be two causes: first, the result may 
simply be a statistical aberration; or second, there may 
be something wrong with the facility being tested. If an 
examination of the plant indicates that there is nothing 
wrong, then retesting should yield a result that is below 
the limit. Thus. the cost of a tight limit may simply be 



the price for retesting. On the other hand, if there is a 
perception that a limit should never be exceeded, then 
higher confidence levels and periods between likely ex­
ceedances are indicated. There are costs to increasingly 
higher limits. From a project perspective, higher limits 
create a perception of much larger emissions than actu­
ally will occur. From a regulatory perspective, higher 
limits consume greater amounts of the pollutant incre­
ment in attainment areas and require more offsets in 
nonattainment areas. 

As a general rule, 95% confidence limits balance 
the types of statistical errors encountered and 99% 
confidence limits leave only a 1 % chance of finding 
noncompliance when the plant is really meeting a limit. 
g __ factors for five different types of intervals are pro­
vided in Appendix C-l and C-2 for the 95% and 99% 
statistical confidence levels. The formulas in Appendix 
B can be used to calculate the factors for other confi­
dence levels and conditions. 

Confidence Interval for the Mean 

The upper Confidence Limit for the mean defines a 
level that is likely to be above the population mean. It 
is not an estimate of how large an individual test run 
or average might be found during any specific test. 
Appendix C contains the coefficients (gCI) needed to 
estimate the upper Confidence Limit for the mean. 

If the problem is to estimate a limit below which 
long-term average performance (the population mean) 
is likely to be found, a Confidence Limit is used. If the 
question being addressed refers to average values, such 
as multi-hour block-average CEMS results, then the 
block average standard deviation should be used in Eq. 
(1). This standard deviation can be estimated using 
the factors provided in Appendix C-3. Appendix C-4 
provides standard deviation adjustment factors for 
different averaging times where the samples are ran­
domly drawn and not block-averaged. This limit ap­
plies to estimating average annual or lifetime facility 
emissions based on facility data; it also applies to aver­
age emissions from a group of facilities that have been 
tested and shown to be similar provided the test data 
is pooled prior to estimating the Confidence Interval. 

Correcting test data for sampling (averaging) time is 
important if underestimated limits are to be avoided. 
For example, if 8-hr sampling time data is used to 
establish a minimally acceptable 4-hr permit limit, as 
discussed in detail later, the standard deviation used in 
Eq. (1) will be underestimated by 25-30%. 
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Tolerance Limits that Contain a Specified Data 

Percentage 

If an interval is needed in which a specified percent­
age of the test results are likely to reside, a Tolerance 
Limit is calculated (use gT). 

The Tolerance Limit is useful for estimating the 
emissions of a new source. Historical data provide a 
basis for saying "this is how plants like the proposed 
facility perform." The Tolerance Limit says that, based 
on the data, we are statistically confident (say 95%) 
that a given percentage (say 99%) of all future plants of 
this type will exhibit emissions less than the Tolerance 
Limit. Thus, we have a given level of confidence that 
the emissions from a proposed plant will be less than 
the Tolerance Limit calculated from the performance 
of several similar, existing facilities. 

Prediction Limit for the Next Tests 

If a limit estimate is needed to encompass the average 
result of the next set of test runs, the upper bound 
Prediction Interval for the Test Mean is the correct 
limit (use gPI,J. This upper bound applies when you 
are only interested in the results of the next test series 
being below a limit (e.g., a contractor with a single 
acceptance test responsibility). 

The Prediction Interval for k Future Runs (use gPIJ 
provides an upper bound above which any of the indi­
vidual results for k future runs are unlikely to be found. 
This interval estimate provides a specified level of cer­
tainty that all scheduled runs are likely to be below the 
limit. This applies to a situation where a regulatory 
agency sends out test crews to perform a single run 
every year and no exceedances are desired over some 
future period of time. 

The Prediction Interval for the Individual Averages 
of Tfuture, R Replicate tests (gPIRT) provides an upper 
bound estimate for the averages of a specified number 
of future tests which have the same number of repli­
cates. This interval applies when a facility permit re­
quires periodic testing and no exceedances are desired 
between permit renewals or over some longer period 
such as bond life or operating contract term. 

CORRECTLY DESCRIBING THE DATA 

The average and standard deviation must describe 
the data for the calculation to provide the expected 
certainty that the limits will not be exceeded. This 
means that the data analysis must discern the nature 
of the underlying distribution, transform the data as 



necessary to make it normal, and properly handle Be­
low Detection Limit (BDL) test results. 

Structuring the Data for Analysis 

Data analysis begins with data tabulation. The data 
must be correctly transcribed from its original source 
and be in consistent, diluent corrected units for the 
statistical results to be meaningful. To help understand 
the data, it is a good idea to include plant operating 
conditions (number of baghouse modules or electro­
static precipitator fields in use, scrubber reagent flows, 
etc.), key temperatures and pressures and any unusual 
events such as hopper pluggages or intentional off­
design operation. That way, physical and chemical ex­
planations may be able to be developed for any appar­
ently unusual results and nonrepresentative results may 
be identified and excluded from the analysis. 

Data analysis is facilitated if the detection limit is 
preceded by a minus sign when BDL results are re­
corded. This data coding method should not create a 
presentation problem since most spreadsheets can be 
set to display negative numbers in parentheses. Unlike 
the conventional "<" sign, computers readily ignore 
the ( ) display and isolate negative numbers. This BDL 
coding method is particularly useful if arithmetic aver­
ages using half the detection limit for all BDL are 
desired. A simple mathematical test can be written into 
a spreadsheet to create a transformed data set made up 
of the original value for all positive results and half 
the absolute value of negative results. The arithmetic 
average of this transformed data set fulfills a half detec­
tion limit for BDL results. 

Underlying Distribution 

Before accepting that the arithmetic average and 
standard deviation correctly characterize the data, it is 
necessary to examine the data for normalcy. This is 
particularly important if limit calculations which use 
the mean and standard deviation are to be physically 
meaningful as well as mathematically correct. If nor­
mal statistics are applied to a log normal data set, for 
example, the result can be an unachievable permit limit 
and incorrect assessment of the environmental impacts 
and health risks associated with the emission. 

The EPA recommends in SW -846 calculating the 
data mean and variance (standard deviation squared) 
and comparing the results. If the variance is larger than 
the mean, the data is probably not normally distributed 
and transformation prior to comparison to standards 
is recommended. 
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This test assumes that the average and standard devi­
ation can be directly calculated because there are no 
BDL results and identifies severely nonnormal data 
sets. A more powerful method that automatically ac­
commodates BDL results is the use of probability plots. 
Probability plots are prepared by rank ordering the 
data, determining the percentage median rank or quan­
tile associated with the rank of each data point and 
plotting the data against percentage quantile on special 
probability paper. If median rank tables (Lipson and 
Sheth, 1973) are not available, the plotting position 
(%/;) can be estimated using Eq. (2). 

%f = 100· (i - 0.375)/(N + 0.25) (2) 

The total number of runs (both those with detected and 
BDL results) are used to establish N. 

Normally distributed data plot as a straight line on 
normal probability paper. The average is located at the 
50% probability point and the standard deviation is 
one third of the difference between the values plotting 
at 7% and 93%. If the line is not straight, other types 
of distribution paper can be tried. Figure l(a) is a log 
normal probability plot and Fig. 1 (b) is a normal proba­
bility plot of the zinc emissions data from SERRF. 
Note that the plot shows a distinct kink on the normal 
probability paper and a relatively straight line on the 
log normal probability paper. This provides evidence 
that the data is not normally distributed but may be 
log normally distributed. 

BDL data indicates that part of the distribution is 
censored. The number of BDL results locate the plot­
ting position of the detected results; but they do not 
contribute any direct information about the expected 
value of specific individual censored points. The detec­
tion limit is usually plotted for BDL data points since 
the expected value of the rank-ordered BDL results 
could be distant from the detection limit. 

Detection limits occasionally change over time as 
sampling and laboratory methods improve. Conse­
quently, a plant emissions data set made up of several 
test reports may contain multiple censoring (detection) 
levels. For multiple censored data sets, the cleanest 
thing to do is to treat all results smaller than the highest 
detection limit as missing. If run duration was changed, 
however, to improve the detection limit, then BDL 
results from the original testing above the new detection 
limit contribute no information and should be dis­
carded. For example, consider a data set where the 
first series of three test runs results in only one above 
detection limits result, so the test duration was ex­
tended for all subsequent runs. If the longer sampling 
time results in essentially all above detection limits 
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results, the two BDL runs from the first series should 
probably be treated as not having been performed. The 
loss of information from discarding the two runs is 
probably smaller than the risk of biasing the average if 
there is a reasonable chance that the two runs might 
have been above detection limits using the revised pro­
cedure. That is, no one knows where to rank the two 
BDL results. They may be below all the subsequent 
test results or scattered anywhere among them. 

The number of standard deviations associated with 
the median rank percentages can be found in a table of 
Standard Normal Cumulative Probabilities and plotted 
against the rank ordered results. In this case, the mean 
is located at Zp = 0, and the standard deviation is the 
slope of the straight line. This is equivalent to probabil­
ity plots with Zp replacing %/; as the plotting position. 
It can also be implemented in a spreadsheet program 
by first using Eq. (2) to determine the percentage rank 
order of the data points and the inverse cumulative 
probability formula in Appendix B to calculate the 
associated Zp. The normal plot is then generated using 
the X-Y graphing feature found in many spreadsheets 
by plotting each data point against its associated Zp. 
From the spreadsheet's linear regression procedure, the 
mean is the intercept and the standard deviation is the 
slope of the line calculated using the data points as 
the dependent variable and the associated Z/s as the 
independent variable. 

Different distribution types can be identified by 
transforming the data before plotting. While any trans­
form could be tested using this procedure, log and 
square root transformations are most likely to be suc­
cessful since they apply to long, high tailed data (Na­
trella, 1966). The correlation coefficients provided by 
most linear regression programs can also be compared 
for various data transformations to determine the shape 
of the underlying distribution. 

If a statistical analysis software package is available, 
then more sophisticated analyses are possible. Using 
one such program, Fig. 21 was generated for the zinc 

I The Mean is the arithmetic average of the data and the Median is 
the value that has a %f, equal to 50% (or the average of the closest 
values on either side of 50%). The 5% Trim is the arithmetic average 
computed with the largest and smallest 5% of the data discarded. 
This procedure eliminates potential outliers. For a normal distribu­
tion, the mean, median and 5% Trim are all the same. The STanDard 
ERRor is also called the standard deviation of the mean and is the 
standard deviation divided by the square root of the number of runs 
(Cases) in the data set. The variance is the square of the STanDard 
DEViation. For normal distributions, the variance is less than the 
mean. The Min., Max., and Range are the smallest and largest data 
values and the difference between the largest and smallest value. 
The InterQuartile Range indicates where the center half of the data 
resides. Skewness is the third moment of the data distribution and 
generally has a value less than 0.5-1.2 (depending on statistical sig­
nificance and number of runs) for a normal distribution. S E Skew 
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emissions data. In addition to normal plots, detrended 
normal plots are provided which show the deviation 
between the actual data point and the theoretical value 
for each %/;. The detrended normal plot should not 
display a regular pattern. This examination of the data 
provides additional information on the characteristics 
of the distribution. Perhaps most important are the 
Shapiro-Wilks and K-S (Lilliefors) normalcy tests to 
the data. The reported significance is the chance that a 
test statistic as large as calculated would have been 
found if the (transformed) data were normal. If the 
likelihood is small, say less than 5%, the data is proba­
bly not normally distributed. Comparing the normal 
and log normal assumptions for the zinc data, there 
is less than a 1 % chance that the data is normally 
distributed; however, a log normal distribution would 
have resulted in the observed data set about half the 
time. 

Average and Standard Deviation 

Hand calculators, spreadsheet programs and statisti­
cal analysis packages usually calculate averages and 
standard deviations. Typically, only statistical analysis 
packages use special mathematical algorithms to avoid 
machine rounding errors. As a result, an estimated 
mean and standard deviation is likely to be slightly 
different depending on the equipment used to make the 
calculation. This effect can be seen in Appendix A. 
The half detection limit BDL substituted averages and 
standard deviations were calculated using internal 
spreadsheet functions. The Normal Distribution aver­
ages and standard deviations were calculated using a 
statistical analysis package. For the trace metals sets 
without BDL results, the averages and standard devia­
tions should be identical since no substitutions or esti­

. mates are involved. The averages are generally compa­
rable, but there are third digit differences (for this data 
set) in the standard deviations. Even with the 64 bit 
arithmetic used to perform these calculations, steps 
need to be taken to minimize rounding errors. 

When BDL results are present, correct data handling 
is mandatory. If the BDL results are simply ignored 
and the "detects" averaged, the average will be too high 
and the standard deviation too small, both by unknown 
amounts. Even if the BDL results are included but 
taken as zero, half the detection limit or the detection 
limit, the average and standard deviation remain biased 
by an unknown amount. The best approach is to esti-

provides an estimate of the standard error for the skewness. The 
Kurtosis is the fourth moment of the data and S E Kurt is the 
standard error of the kurtosis. 
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mate the likely values for BDL data using the proce­
dure described in Rigo ( 1989), Travis and Land (1990), 
and Helsel ( 1990). Expected values for the rank ordered 
BDL results are estimated using the mean, standard 
deviation determined during the distribution checking 
procedure and Zp associated with each BDL value us­
ing Eq. (3): 

BDLest = mean + Zp • standard deviation (3) 

If the data was transformed before determining the 
mean and standard deviation, inverse the transforma­
tion after calculating BDLest• For example, square 
BDLest if the data was square root transformed before 
analysis; calculate the exponential ofBDLes! if the natu­
ral logarithm of the data was analyzed. 

The validity of the transformation and filling process 
can be determined by repeating the normal plotting and 
distribution analysis procedures with the filled data set. 
If the correct underlying distribution has been used to 
calculate BDLesv then the estimated data should appear 
to be part of the complete data set. If an incorrect 
underlying distribution has been assumed, then a dis­
tinct kink or bowing in the plot will demark the esti­
mated to measured data transition. If, however, policy 
requires the use of an arithmetic average regardless of 
the nature of the underlying distribution, then the fill­
ing process will result in the best estimate that can be 
made for the data average (Helsel, 1990). 

If the data is made up of two distinct groups and the 
data is not partitioned before analysis, the calculated 
standard deviation may be seriously in error. Limit or 
emission rate projections based on probabilities outside 
the range of %/; covered by the data are likely to be as 
much as three orders of magnitude high for data sets 
made up of near detection limits data and high values. 
Data grouping is necessary if the normal plots indicate 
that two straight lines are present, especially if they 
appear to be off-set rather than intersecting. If the data 
appears to be best described by two straight lines, the 
low value group should be regressed against Zp while 
treating the data in both the high value group and 
BDL as missing to obtain estimates for the mean and 
standard deviation of the low value data group. Some 
of the trace emissions data in Appendix A exhibits this 
characteristic. Means and standard deviations used to 
estimate the Upper Tolerance Limit provided in Ap­
pendix A were based on the group data. 

While the intuitive validity of the analysis declines 
as more than half the data is censored, the mean can 
be calculated if an estimate of the coefficient of variance 
can be obtained from previous tests or by assuming that 
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a particular material behaves like another for which 
coefficients of variance are available. For example, if 
the data set contains information on a relatively volatile 
metal like lead, that coefficient of variance could be 
used to estimate the mean of another relatively volatile 
metal like arsenic where only one run might have been 
above detection limits. The estimate is made using Eqs. 
(4) and (5): 

(x) = UL/(l + Zp/ • CV) (4) 

s = cv· (x) (5) 

If there are no detected values, applying the above 
equation to detection limits yields an upper bound esti­
mate for the mean. If the mean is actually any larger 
than the Eq. (4) value, there should have been at least 
one above detection limit result. Of course, the mean 
might be substantially less than the estimate or the 
material completely absent. 

Averaging Time and Number of Replicates 

The average emission rate for a process is not affected 
by the length of sampling or the number of replicates 
averaged. This is because the average (arithmetic, geo­
metric mean, etc. as appropriate) is the same whether 
we average results that are themselves made up of aver­
ages of data subsets or all the data is individually used. 

The standard deviation, however, changes with aver­
aging time or number of samples that are averaged. To 
illustrate the point, a simulation can be done which 
uses a known mean and standard deviation to generate 
. a random set of data points with that mean and stan­
dard deviation. Taking the individual data points as " 1  
hr" data, the effect of 3-, 4-, 8 - and 24-hr sampling or 
averaging times can be shown by making up additional 
data sets that average a number of hours together. Fig­
ure 3 is a normal probability chart displaying those 
results. As can be seen, the mean remains unchanged, 
but the slope (standard deviation) changes with differ­
ent averaging times. 

One of the benefits of having a normal distribution, 
according to statistical theory (Mason, et al., 1989), is 
that averages of random samples are also normally 
distributed with the same mean as the parent popula­
tion, but the standard deviation is reduced by the 
square root of the number of samples used in each 
average. This means that if we know the mean and 
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standard deviation for a given sampling time (say 8-hr 
samples) and we want to compare the results to a 3-hr 
standard, the average can be directly compared. But, if 
the intention is to develop a not to be exceeded limit 
or standard, then the standard deviation must be cor­
rected for sampling time or number of replicates before 
calculating the limit. 

While statistical theory says that averaging time 
standard deviations should be related by the square 
root of the number of samples involved or sampling 
period, an exponent of 0.4 instead of 0.5 provides a 
more consistent estimate of the change in standard 
deviation when hourly data is block averaged. For ex­
ample, if sixteen 8-hr duration test results are available, 
the mean is the same as for a 3-hr test duration, but 
the standard deviation for the 3-hr tests is 1 .5 times as 
large as that apparent from the test data. If the averag­
ing time were to be reduced to a one hour basis that 
matches dispersion modeling emission rate input re-
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quirements, then the standard deviation increases to 
2.3 times that which is apparent from the 8-hr data. 

In addition, while the standard deviation of the un­
derlying distribution is constant, the data based esti­
mate is exactly that, an estimate. To be conservative, it 
is advisable to determine the Upper Confidence Limit 
for the standard deviation and use that value in lieu of 
the data estimate when correcting for differences in 
sampling times or number of replicates. For the previ­
ous example, the I-hr standard deviation is 3 .3 times 
the 8-hr average standard deviation, including the un­
certainty of the standard deviation as well as the aver­
aging time effect. 

Tabulations of the factors for making this correction 
are provided in Appendices C-3 and C-4 for the 0.4 
power and square root of the number of samples respec­
tively. Two sets of factors are provided to enable the 
conversion of data with a sampling time or number of 
replicates greater than 1 ,  to a I-hr (single run) base 
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and to go from a 1 -hr averaging time basis to longer 
averaging times. These factors should be used in con­
verting stack sampling results into hourly emission rate 
data for use in ambient dispersion analysis if upper 
limits are used. They can also be used to estimate com­
pliance limits for 4-, 8- and 24-hr Continuous Emissions 
Monitoring System averaging times given 1-hr data. 

The effect of averaging time can be seen in Fig. 4. 
Figure 4 shows the upper Tolerance Limit that corres­
ponds to %J; for a given frequency of exceedances based 
on the 1 -hr log normal mean (4.243 log units) and 
standard deviation (0. 192 log units) for Carbon Monox­
ide (pPMdv @ 7% OJ emissions at SERRF. %J; was 
determined using Eq. ( 1)  for i equals 1 and the denomi­
nator equal to the number of averaging time periods in 
the calendar period. The calculated limits are provided 
in Appendix D for 95% and 99% confidence levels 
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based on both normal and log normal distribution as­
sumptions. The standard deviation was also corrected 
for block averaging times. 

It is important to realize that in this analysis the 
process creating the emissions is assumed to be station­
ary. That is, the fundamental process causing the emis­
sions does not change and its long term performance is 
characterized by the mean and standard deviation. The 
achievable emission limit changes, however, depending 
upon how often an exceedance is acceptable. 

Given that the average Carbon Monoxide emissions 
are about 71  PPMdv @ 7% O2, if only one exceedance 
every 20 years is desired at the 95% confidence level, 
the permit limit needs to be 172 PPMdv @ 7% O2 
(about 2� times the average) to avoid violations due to 
the inherent variability in the process. If the averaging 
time is increased to 24 hr, the permit limit only needs 



to be 86 PPMdv @ 7% O2 (about 1.2 times than the 

average). 

Both these limits apply to the same process! The only 

difference is the averaging time. Further, since there is 

always some chance that a properly operating process 

will naturally generate a high emission rate, it is pru­

dent that limitations either spell out an acceptable ex­

ceedance frequency (like the "second high" limitation 

found in some national primary and secondary ambient 

air quality standards) or the limit include a margin for 

statistical aberrations. 

The importance of using the proper underlying dis­

tribution is emphasized by the Carbon Monoxide 

CEMS limit example. If the CEMS data were treated 

as being normally distributed instead of log normally 

distributed, the 24-hr averaging time limit is practically 

unaffected (due to operation of the central limit theo­

rem), but the I-hr averaging time limit would have 

been 30 PPMdv @ 7% O2 understated. Improper data 

analysis can lead to the specification of a limit that will 

be exceeded much more than expected. Reviewing the 

tables in Appendix D shows that choosing to be 99% 
instead of 95% confident in the limit has a small effect. 

CONCLUSION 

The methods provided enable the correct character­

ization of emissions test data. Data taken under one set 

of test conditions (run duration and number of runs in 

a test) can be adjusted to other test conditions. Limits 

which are unlikely to be exceeded at a given statistical 

confidence level can be determined. 

These methods enable anyone setting limits to esti­

mate the likelihood of exceeding a specified limit when 

there is nothing wrong with the plant. This can result 

in correctly wording permits to preclude the appear-
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ance of permit violations when noncompliance has not 

actually occurred. 
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APPENDIX B 

The equation for the Prediction Interval for T future 
R Replicate tests is by this author following the sugges­
tion in Hahn (1969). The balance of the equations for 
estimating statistical intervals were brought together 
by Hahn (1970a, 1970b). The equations for estimating 
Zp' t(n- I, alpha)' and X2(n- I, alpha) were taken from Abra­
mowitz and Stegun ( 1965). 

Tables of several of these intervals are available in 
standard statistical references (Natrella, 1966). The fac­
tor for the confidence interval for the mean is usually 
not tabulated because of the ease with which it can 
be estimated given a table of Student-t statistics. The 
Tolerance Limit is also frequently tabulated for two 
sided Confidence Limits but statistical literature must 
be searched to find tables of one sided Tolerance Limits. 
A table to generate two-sided Prediction Intervals can 
be found in Wadsworth (1990). 

The published interval tables, however, do not usu­
ally apply to numbers of tests, numbers of replicates or 
numbers of runs that are typical of stack testing. The 
published tables also ignore the problem of run dura­
tions and apply to uninteresting numbers offuture tests 
and runs. Finally, the published tables are usually for 
two sided intervals and the usual emissions estimating 
problem involves finding a limit that is not likely to be 
exceeded (one-sided limit). 

The following equations provide the means of calcu­
lating the factors applicable to specific problems: 

Upper Confidence Interval Limit for the Mean 

- (II )\;2 * gel - n ( n- I ,  I -alpha) (B- 1) 

Upper Prediction Interval Limit for k Future Runs 

gPIk = (1 + lIn)I/2 * t(n- I ,  I-alphalk) (B-2) 

Upper Prediction Interval Limit for the Next Test 

Mean 

gPlm = (lIR + lIn)\;2 * t(n- I, I -alpha) (B-3) 

Upper Prediction Interval for T Future Replicate 

Means 

gPlRT = (lIR + lIn)\;2 * t(n - I. I-alphal[T'RD (B-4) 
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Upper Tolerance Limit 

I;. gT = [Zp + (Z/ - a * b) 2]la (B-5) 

where 

a = 1 - [Z(I-alphal/[2 * n - 2] 
b = Zpz - Z(I _alpha)z/n 

Upper Confidence Limit on the Standard Deviation 

I;. 
gSD = [ (n - 1)IX2(n_ l. alpha) ] 2 (B-6) 

and the factor to correct for R replicates or test dura­

tion in-house is gSD divided by RYJ. or RO.4 (depending 
on whether the correction is for random averages or 
block averages) to convert the standard deviation to a 
one hour result. 

In order to use the above formulas, estimates of the 
Student t-distribution for significance levels (values of 
alpha) which are not found in common tables are 
needed. Also, many cumulative normal probability ta­
bles do not contain Zp of interest and interpolation is 
necessary. 

A rational approximation for Zp given the fraction 
of the normal curve below p (%/; expressed as a frac­
tion) such that 0 < p � 0.5 is: 

where: 

Zp = ( - (2.30753 + 0.27061t)1 

( 1  + 0.99229t + 0.04481t2) (B-7) 

t = { -2.0 * In(p) }
\t
z 

For p greater than 0.5, compute the above for: 
p' = 1 - p and 
Zp = -Z/ 

An asymptotic expansion for the inverse Student-t 
distribution function, which uses Zp corresponding to 
alpha, is: 

where: 
G1(z) = (Z3 + z)/4 
Gz(z) = (5z5 + 1 6z3 + 3z)/96 
Glz) = (3z7 + 19z5 + 17z3 - 1 5z)/384 



Giz) = (79z9 + 776z7 + 1482z5 - 1920z3 - 945z)/ 
921 60 

Numerical approximations for the Chi-Square distri­
bution are only available for more than 30 degrees of 
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freedom. Since one is usually interested in tabulated 
confidence levels (alpha levels of 5%, 2.5%, 1 % and 
0. 1 %), a need to generate untabulated values is un­
likely. Appropriate values can be found in standard 
statistical references (Natrella, 1966). 



APPENDIX C 

APPENDIX C-l FACTORS FOR DETERMINING U PPER CON FIDENCE, TOLERANCE AND PREDICTION LIMITS AT 

TH E 5% SIGNIFICANCE LEVEL (95% Confidence) AND 95% PROBABILITY OF CONTAINING ALL FUTURE 

RESU LTS 

PREDICfION LIMITS 

FUTURE 95% 
PROBAB- CONFID- CONFID- 95% MEAN OF 

DATA BASE TESTS REPS. RUNS ILlTY ENCE ENCE TOLERANCE NEXT T FUTURE k FUTURE 

LIMIT LIMIT TEST TESTS TESTS 

g g g g g 
n T R k P alpha CI T PIm PIRT Plk 

j 1 j j �)'II:> )'11:> 1.b!S �.)1 J..JIS 4.jl O.U'J 
2 6 6.09 8.62 
3 9 7.41 10.47 
4 12 8.48 12.00 
5 15 9.41 13.31 

20 60 17.40 24.60 
6 1 3 3 95% 5% 0.82 3.67 1.42 2.06 3.15 

2 6 2.50 3.82 
3 9 2.78 4.24 
4 12 2.98 4.56 
5 15 3.15 4.81 

20 60 4.33 6.62 
9 1 3 3 95% 5% 0.62 2.99 1 .24 1.71 2.71 

2 6 2.01 3.18 
3 9 2.19 3.47 
4 12 2.32 3.67 
5 15 2.42 3.83 

20 60 3.10 4.90 
12 1 3 3 95% 5% 0.52 2.71 1 .16 1.57 2.53 

2 6 1 .82 2.94 
3 9 1 .97 3.17 
4 12 2.07 3.34 
5 15 2.15 3.47 

20 60 2.67 4.31 
15 1 3 3 95% 5% 0.45 2.54 1.11 1.49 2.44 

2 6 1.72 2.81 
3 9 1 .85 3.02 
4 12 1.94 3.17 
5 15 2.01 3.29 

20 60 2.46 4.01 
18 1 3 3 95% 5% 0.41 2.43 1 .08 1.44 2.38 

2 6 1.66 2.73 
3 9 1 .78 2.93 
4 12 1.86 3.07 
5 15 1.93 3.18 

. 20 60 2.33 3.84 
21 1 3 3 95% 5% 0.38 2.35 1.06 1.41 2.34 

2 6 1.61 2.68 
3 9 1.73 2.87 
4 12 1.81 3.00 
5 15 1.87 3.10 

20 60 2.24 3.72 
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APPEN DIX C-2 FACTORS FOR DETERMINING U PPER CON FIDENCE, TOLERANCE AND PREDICTION LIMITS AT 

THE 1% SIGNIFICANCE LEVEL (99% Confidence) AND 99% PROBABILITY OF CONTAINING ALL FUTU RE 

RESU LTS 

PREDICfION LIMITS 

FUTIJRE 99% 
PROBAB- CONFID- CONFID- 99% MEAN OF 

DATA BASE TESTS REPS. RUNS ILiTY ENCE ENCE TOLERANCE NEXT T FUTIJRE k FUTURE 

LIMIT LIMIT TEST TESTS TESTS 

g g g g g 
n T R k P a�ha CI T Plm PIRT Plk 

j 1 j j Y'J'1o 1'10 j.Y'I U.ISI :>.:> 1 �.41 U.jl 
2 6 12.88 18.21 
3 9 15.38 21.75 
4 12 17.40 24.60 
5 15 19.12 27.04 

20 60 33.39 47.22 
6 1 3 3 99% 1% 1 .37 9.07 2.38 3.15 4.81 

2 6 3.71 5.67 
3 9 4.06 6.21 
4 12 4.33 6.62 
5 15 4.55 6.95 

20 60 6.10 9.32 
9 1 3 3 99% 1% 0.97 5.78 1.93 2.42 3.83 

2 6 2.75 4.35 
3 9 2.95 4.67 
4 12 3.10 4.90 
5 15 3.21 5.08 
20 60 3.98 6.30 

12 1 3 3 99% 1% 0.79 4.81 1.76 2.15 3.47 
2 6 2.41 3.88 
3 9 2.56 4.13 
4 12 2.67 4.31 
5 15 2.76 4.44 

20 60 3.31 5.33 
15 1 3 3 99% 1% 0.68 4.32 1 .66 2.01 3.29 

2 6 2.23 3.65 
3 9 2.36 3.86 
4 12 2.46 4.01 
5 15 2.53 4.13 

20 60 2.98 4.87 
18 1 3 3 99% 1% 0.61 4.03 1 .60 1.93 3.18 

2 6 2.13 3.51 
3 9 2.25 3.70 
4 12 2.33 3.84 
5 15 2.39 3.94 

20 60 2.79 4.60 
21 1 3 3 99% 1% 0.55 3.82 1.56 1.87 3.10 

2 6 2.06 3.41 
3 9 2.17 3.59 
4 12 2.24 3.72 
5 15 2.30 3.82 

20 60 2.67 4.43 
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APPEN DIX C-3 FACTORS FOR DETERMINING THE 

STANDARD DEVIATION APPLICABLE TO ONE BLOCK 

AVERAGING TIM E  BASIS GIVEN ANOTH ER 

FACTORS TO CONVERT SAMPLE PERIOD STANDARD DEVIATIONS 
TO EQUIVALENT ONE HOUR STANDARD DEVIATIONS 

AT THE 95% CONFIDENCE LEVEL 
BLOCK AVERAGES 

I NUMl>eK Ul' 
RUNS IN SAMPLE RUN TIMES 

DATA BASE 2 3 4 8 24 

3 5.90 6.94 7.79 10.27 15.94 

4 3.86 4.54 5.10 6.73 10.44 

5 3.13 3.68 4.13 5.45 8.46 

6 2.75 3.24 3.63 4.79 7.43 

7 2.52 2.97 3.33 4.39 6.82 

8 2.37 2.79 3.13 4.13 6.40 

9 2.26 2.66 2.98 3.93 6.10 

10 2.17 2.55 2.86 3.78 5.86 

1 1  2.10 2.47 2.77 3.66 5.68 

12 2.05 2.41 2.70 3.56 5.53 

13 2.00 2.35 2.64 3.48 5.40 

14 1.96 2.31 2.59 3.41 5.30 

15 1.93 2.27 2.54 3.35 5.20 

16 1.90 2.23 2.50 3.30 5.12 

17 1.87 2.20 2.47 3.26 5.05 

18 1.85 2.17 2.44 3.22 4.99 

19 1.83 2.15 2.41 3.18 4.94 

20 1.81 2.13 2.39 3.15 4.89 

FACTORS TO CONVERT ONE HOUR STANDARD DEVIATIONS 
TO EQUIVALENT AVERAGING PERIOD STANDARD DEVIATIONS 

AT THE 95% CONFIDENCE LEVEL 
BLOCK AVERAGES 

I NUMIll:.KUt' 
RUNS IN SAMPLE RUN TIMES 

DATA BASE 2 3 4 8 24 

3 3.27 2.73 2.40 1.75 1.07 

4 2.14 1.79 J.S7 J.l5 0.70 

5 1.74 1.45 1.27 0.93 0.57 

6 1.53 1.27 J .l2 0.82 0.50 

7 1.40 J.l7 1.03 0.75 0.46 

Il 1.31 J.l0 0.96 0.70 0.43 

9 1 .25 1.04 0.92 0.67 0.41 

10 1.20 1.00 0.88 0.64 0.39 

1 1  J.l7 0.97 0.85 0.62 0.38 

12 J.l4 0.95 0.83 0.61 0.37 

13 1.11 0.92 0.81 0.59 0.36 

14 1.09 0.91 0.80 0.58 0.36 

15 1 .07 0.89 0.78 0.57 0.35 

16 1.05 0.88 0.77 0.56 0.34 

17 1.04 0.86 0.76 0.56 0.34 

18 1.03 0.85 0.75 0.55 0.34 

19 1.01 0.84 0.74 0.54 0.33 

20 1.00 0.84 0.73 0.54 0.33 
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APPEN DIX C-4 FACTORS FOR DETERMINING THE 

STANDARD DEVIATION APPLICABLE TO O N E  

RAN DOM SAM PLE AVERAGING TIM E BASIS GIVEN 

ANOTHER 

FACTORS TO CONVERT SAMPLE PERIOD STANDARD DEVIATIONS 
TO EQUIVALENT ONE HOUR STANDARD DEVIATIONS 

AT THE 95% CONFIDENCE LEVEL 
RANDOM AVERAGES 

I NUMllhKUt' RUNS IN SAMPLE RUN TIMES 
DATA BASE 2 3 4 8 24 

3 6.32 7.75 8.94 12.65 21.91 

4 4.14 5.07 5.86 8.28 14.34 

5 3.36 4.11 4.75 6.71 1 1 .63 

6 2.95 3.61 4.17 5.90 10.22 

7 2.71 3.31 3.83 5.41 9.37 

8 2.54 3.11 3.59 5.08 8.80 

9 2.42 2.96 3.42 4.84 8.39 

10 2.32 2.85 3.29 4.65 8.05 

1 1  2.25 2.76 3.19 4.51 7.80 

12 2.19 2.69 3.10 4.39 7.60 

13 2.14 2.62 3.03 4.28 7.42 

14 2.10 2.57 2.97 4.20 7.28 

15  2.06 2.53 2.92 4.13 7.15 

16 2.03 2.49 2.87 4.07 7.04 

17 2.01 2.46 2.84 4.01 6.95 

18 1.98 2.43 2.80 3.96 6.86 

19 1.96 2.40 2.77 3.92 6.78 

20 1.94 2.37 2.74 3.88 6.71 

FACTORS TO CONVERT ONE HOUR STANDARD DEVIATIONS 
TO EQUIVALENT AVERAGING PERIOD STANDARD DEVIATIONS 

AT THE 95% CONFIDENCE LEVEL 
RANDOM AVERAGES 

I NUMIll:.KUt' 
RUNS IN SAMPLE RUN TIMES 

DATA BASE 2 3 4 8 24 

3 3.16 2.58 2.24 1.58 0.91 

4 2.07 1 .69 1.46 1.04 0.60 

5 1.68 1.37 J.l9 0.84 0.48 

6 1.47 1 .20 1.04 0.74 0.43 

7 1.35 J.lO 0.96 0.68 0.39 

8 1.27 1.04 0.90 0.64 0.37 

9 1.21 0.99 0.86 0.61 0.35 

10 J.l6 0.95 0.82 0.58 0.34 

11 J.l3 0.92 0.80 0.56 0.33 

12 1.10 0.90 0.78 0.55 0.32 

13 1 .07 0.87 0.76 0.54 0.31 

14 1 .05 0.86 0.74 0.53 0.30 

15 1 .03 0.84 0.73 0.52 0.30 

16 1 .02 0.83 0.72 0.51 0.29 

17 1.00 0.82 0.71 0.50 0.29 

18 0.99 0.81 0.70 0.50 0.29 

19 0.98 0.80 0.69 0.49 0.28 

20 0.97 0.79 0.69 0.48 0.28 



APPENDIX D 

APPEN DIX D-1 FACTORS AND CALCU LATION OF U PPER TOLERANCE LIMITS CORRESPONDING TO ONE 

EXCEEDANCE PER CALENDAR PERIOD - l-hr BLOCK AVERAGE DATA 

ONE IDUR AVERAGIN; 1lME 
e mean I std dey statistical limit 
frequency lor normal distribution n P confulence UlL PPWv 

daily 4.243 0.192 734 0.974227 0.95 2.054 1 03 
weekly 4.243 0.1 92 734 0.996285 0.95 2 .8 1 4  1 1 9 

monthly 4.243 0 .192 734, 0.999 1 4,4- 0.95 3.292 1 3 1  
)ftl'ly 4.243 0 .192 734 0.999929 0.95 3.988 150  

5 � 4.243 0.1 92 734, 0.999986 0.95 4.386 162  
1 0 � 4.243 0.192 734, 0.999993 0.95 4.547 167 
1 5 � 4.243 0.192 734, 0.999995 0.95 4.639 170 
20  years 4.24,3 0 .192 734, 0.999996 0.95 4.703 172 

normal distribution 
daily 70.915 15.276 734, 0.974227 0.95 2.054, 102 

weekly 70.9 1 5  1 5.276 734 0.996285 0.95 2.8 1 4  1 1 4 
monthly 70.9 1 5  1 5.276 734, 0.99 9 1 44 0.95 3.292 1 2 1  

)ftl'ly 70.9 1 5  1 5.276 734, 0.999929 0.95 3.988 1 32 
5 � 70.9 1 5  1 5.276 734, 0.999986 0.95 4.386 138 

1 0 � 70.9 1 5  1 5.276 734, 0.999993 0.95 4.547 1 40 
1 5 � 70.9 1 5  1 5.276 734, 0.999995 0.95 4.639 1 42 
20 years 70.9 1 5  1 5.276 734, 0.999996 0.95 4.703 1 43 

exceedan.ce mean I std dev statistical 
freQuency lor normal distribution n P confulence UlL limit 

daily 4.243 0.192 734: u.974i-!i-!7 0.99 2.1 U l  l U4, 
weekly 4.243 0 .192 734, 0.996285 0.99 2.874 1 2 1  

monthly 4.243 0 .192 734, 0.99 9 1 4,4- 0.99 3.360 1 33 
)ftl'ly 4.243 0 .192 734, 0.999929 0.99 4.068 1 52 

5 �  4.243 0 .192 734, 0.999986 0.99 4,.4, 73 1 64, 
1 0 � 4.243 0 .192 734, 0.999993 0.99 4,.637 1 70 
1 5 � 4.243 0 .192 734, 0.999995 0.99 4.73 1 173 
20  years 4.243 0.1 92 734, 0.999996 0.99 4.796 175 

normal distribution 
daily 70.9 15 15.276 734, 0.974227 0.99 2.1 0 1  1 0 3  

weekly 70.9 1 5  1 5.276 734, 0.996285 0.99 2.874 1 1 5 
monthly 70.9 1 5  1 5.276 734 0.999 1 4,4- 0.99 3.360 122  

)ftl'ly 70.9 1 5  1 5.276 734, 0.999929 0.99 4,.068 133  
5 �  70.9 1 5  1 5.276 734, 0.999986 0.99 4.473 139 

1 0 � 70.9 1 5  1 5.276 734, 0.999993 0.99 4.637 1 42 
1 5 � 70.9 1 5  1 5.276 734, 0.999995 0.99 4.7 3 1  1 43 
20 J'I!8l'S 70.9 1 5  1 5.276 734- 0.999996 0.99 4.796 1 4,4-
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APPEN DIX 0-2 FACTORS AND CALCU LATION OF U PPER TOLERANCE LIMITS CORRESPO N DING TO ONE 

EXCEEDANCE PER CALEN DAR PERIOD - 4-hr BLOCK AVERAGE DATA 

FOUR OOUR AVERA� 'l1ME 
exceedance mean t std dey statistical limit 
frequency loll normal distribution n P confidence tJIL PPMlv 

daily 4.243 0.1 10 734 0.900000 0.95 1 .365 8 1  
weekly 4.243 0.1 1 0  734 0.985207 0.95 2.292 90 

monthly 4.243 0.1 1 0  734 0.996580 0.95 2.843 95  
yearly 4.243 0.1 1 0  734 0.9997 1 5  0.95 3.6 1 5  104  

5 years 4.243 0.1 1 0  734 0.999943 0.95 4.045 1 09 
10 years 4.243 0.1 1 0  734 0.999971  0.95 4.2 1 8  1 1 1  
1 5  years 4.243 0.1 1 0  734 0.999981  0.95 4.3 1 7  1 1 2  
20 years 4.243 0.1 1 0  734 0.999986 0.95 4.386 1 1 3  

normal distribution 
daily 70.9 15 8.774 734 0.900000 0.95 1 .365 83 

weekly 70.9 1 5  8.774 734 0.985207 0.95 2.292 9 1  
monthly 70.9 1 5  8.774 734 0.996580 0.95 2 .843 96 

yearly 70.9 1 5  8.774 734 0.999715  0.95 3.6 1 5  1 03 
5 years 70.9 1 5  8.774 734 0.999943 0.95 4.045 1 0 6  

1 0  years 70.9 1 5  8.774 734 0.99997 1 0.95 4.2 1 8  1 08 
1 5  years 70.9 1 5  8.774 734 0.999981 0.95 4.3 1 7  1 09 
20 years 70.9 1 5  8.774 734 0.999986 0.95 4.386 1 0 9  

exceedance t std dey statistical 
frequency ,lL n P confidence tJIL limit 

daily 4.243 0 .192 734 0.900000 0.99 1 .401 9 1  
weekly 4.243 0.1 92 734 0.985207 0.99 2.343 1 09 

monthly 4.243 0 .192 734 0.996580 0.99 2.903 1 22 
yearly 4.243 0 .192 734 0.999 7 1 5  0.99 3.688 1 4 1  

5 years 4.243 0 .192 734 0.999943 0.99 4.1 26 1 54 
1 0  years 4.243 0 . 192  734 0.999971 0.99 4.303 1 59 
1 5  years 4.243 0 .192 734 0.999981 0.99 4.403 1 62 
20 wars 4.243 0 .192 734 0.999986 0.99 4.473 1 64 

normal distribution 
daily 70.9 1 5  1 5.276 734 0.900000 0.99 1 .40 1 92  

weekly 70.9 1 5  1 5.276 734 0.985207 0.99 2.343 1 07 
monthly 70.9 1 5  1 5.276 734 0.996580 0.99 2.903 1 1 5  

yearly 70.9 1 5  1 5.276 734 0.9997 1 5  0.99 3.688 1 27 
5 years 70.9 1 5  1 5.276 734 0.999943 0.99 4.126 1 34 

1 0  years 70.9 1 5  1 5.276 734 0.999971  0.99 4.303 1 37 
1 5  years 70.9 1 5  1 5.276 734 0.999981  0.99 4.403 1 38 
20 years 70.9 1 5  1 5.276 734 0.999986 0.99 4.473 1 39 
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APPEN DIX 0-3 FACTORS AND CALCU LATION OF U PPER TOLERANCE LIMITS CORRESPONDING TO ONE 

EXCEEDANCE PER CALENDAR PERIOD - 24-hr B LOCK AVERAGE DATA 

TWENI'Y FOUR fJ.)UR A VERAG� 11ME 
exceeda.nce mean t sld dev statistical limit 
frequency lor normal distribution n P confIdence UlL PPWv 

daily 4.243 0.054 734 0.500000 0.95 0.06 1 70 
weekly 4.243 0.054 734 0.9 1 3793 0.95 1 .450 75 

monthly 4.243 0.054 734 0.979620 0.95 2 .157 78 
yearly 4.243 0.054 734 0.998289 0.95 3.075 82 

5 years 4.243 0.054 734 0.999658 0.95 3.563 84 
10 years 4.243 0.054 734 0.999829 0.95 3.756 85 
15 years 4.243 0.054 734 0.999886 0.95 3.865 86 
20 :years 4.243 0.054 734 0.9999 1 4  0.95 3.941 86 

normal distribution 
daily 70.9 1 5  4.285 734 0.500000 0.95 0.061  71  

weekly 70.9 1 5  4.285 734 0.9 1 3793 0.95 1 .450 77 
monthly 70.9 1 5  4.285 734 0.979620 0.95 2 .157 80 

yearly 70.9 1 5  4.285 734 0.998289 0.95 3.075 84 
5 years 70.9 1 5  4.285 734 0.999658 0.95 3.563 86 

10 years 70.9 1 5  4.285 734 0.999829 0.95 3.756 87 
15 years 70.9 1 5  4.285 734 0.999886 0.95 3.865 87 
20 :years 70.9 1 5  4.285 734 0.999 9 1 4  0.95 3.941 88 

exceeda.nce mean I std dev statistical 
froouencv loll normal distribution n P confIdence UlL limit 

daily 4.243 0 .192 734 0.500000 0.99 0.086 7 1  
weekly 4.243 0 .192 734 0.9 1 3793 0.99 1 .488 93 

monthly 4.243 0 .192 734 0.979620 0.99 2.206 1 06 
yearly 4.243 0 . 1 92 734 0.998289 0.99 3 .138 127  

5 years 4.243 0 . 192  734 0.999658 0.99 3.635 1 40 
1 0  years 4.243 0 . 192  734 0.999829 0.99 3.832 1 45 
1 5  years 4.243 0 . 192  734 0.999886 0.99 3.943 1 48 
20 :years 4.243 0 .192 734 0.999914  0.99 4.020 1 5 1  

I normal distribution 
daily 70.9 1 5  1 5.276 734 0.500000 0.99 0.086 72 

weekly 70.9 1 5  1 5.276 734 0.9 1 3793 0.99 1 .488 94 
monthly 70.9 1 5  1 5 .276 734 0.979620 0.99 2.206 1 05 

yearly 70.9 1 5  15 .276 734 0.998289 0.99 3 .138 1 1 9  
5 years 70.9 1 5  1 5 .276 734 0.999658 0.99 3.635 1 26 

1 0  years 70.9 1 5  1 5 .276 734 0.999829 0.99 3.832 129  
1 5  years 70.9 1 5  1 5.276 734 0.999886 0.99 3.943 1 3 1  
20 :years 70.9 1 5  1 5.276 734 0.999 9 1 4  0.99 4.020 1 32 
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