AIR EMISSION TEST RESULTS FROM THE DUTCHESS COUNTY RESOURCE RECOVERY FACILITY

DAVID S. BEACHLER AND NANCY M. HIRKO

Westinghouse Electric Corporation Resource Energy Systems Division (RESD) Pittsburgh, Pennsylvania

ABSTRACT

This paper presents the results of air emission compliance tests conducted from February through May 1989 at the Dutchess County Resource Recovery Facility (RRF) Center in Poughkeepsie, New York, and observed by the New York State Department of Environmental Conservation engineers. The tests were conducted to measure the concentration of particulate matter, SO₂, NO_x, CO, O₂, nonmethane hydrocarbon (NMHC), lead, beryllium, mercury, flourides, HCl, dioxins, and furans.

The Dutchess County facility is a 400 ton per day (TPD), or 363 metric TPD, plant using two Westinghouse O'Connor combustor/boiler trains to burn municipal solid waste (MSW) and produces approximately 8 MW of electricity. Each train is equipped with a dry lime injection system to remove acid gases and a baghouse to remove particulate matter. Westinghouse has been operating the plant since September, 1988.

INTRODUCTION

The emission compliance tests were conducted at the Dutchess RRF as part of the Acceptance Test from January 31 through February 17, 1989 and May 24 and 25, 1989. Additional testing was conducted on March 15 and 16, 1989. Stack sampling was performed by ETS, Inc. at the direction of Westinghouse RESD engineers. All compliance tests were observed by New York State Department of Environmental Conservation (NYSDEC) engineers. Tests conducted on March 15 and 16 are included as supplementary test data. Tests were conducted according to the prepared test protocol that was approved by the NYSDEC. Each combustor / boiler was operated to burn approximately 8.33 TPH (7.57 metric TPH) MSW or a daily plant average of 400 TPD during the test program.

FACILITY DESCRIPTION

The Dutchess County RRF is designed to burn up to 510 TPD of MSW (having a higher heating value of 4500 btu/lb, or 2500 cal/g) using two Westinghouse-O'Connor water-walled rotary combustors. However, the facility is currently permitted to burn 400 TPD; 200 TPD for each combustor. Heat generated from the combustion of waste produces steam to drive a turbine generator and produces process steam for the adjacent IBM facility. The process flow diagram is shown in Fig. 1.

The plant consists of two combustor/boiler units, a turbine generator, a truck scale, a tipping floor, MSW storage pit, two overhead cranes for feeding MSW into

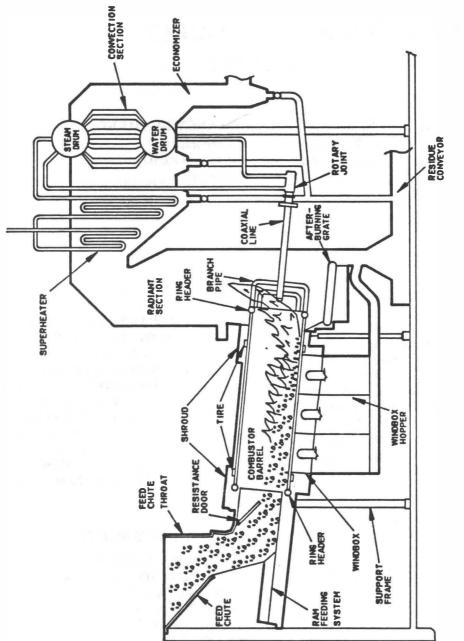


FIG. 1 DUTCHESS COUNTY FACILITY PROCESS FLOW DIAGRAM

WESTINGHOUSE-O'CONNOR WATER-COOLED ROTARY COMBUSTOR AND BOILER

the combustors, dry injection acid gas removal systems, baghouses, a stack, ash handling equipment, a control room, and all required ancillary equipment. The facility also has administration offices, change rooms, parking areas, roadways, and security fencing.

The heat released from the combustion process is recovered through the rotary combustor walls, boiler water walls and tubes, primary and secondary superheater, and the economizer. To expedite combustion of high-moisture waste, the incoming combustion air is preheated to approximately 400°F (204°C) by steam air heaters.

The air pollution control (APC) system consists of a dry injection venturi system used to remove HCl and SO_2 , followed by a baghouse to remove particulate matter, acid gas reaction products, and unused sorbent. (See Fig. 2). A spark arrestor is located before the dry injection system to prevent hot sparks from entering the baghouse. Each combustor/boiler train has its own APC system. Flue gas is drawn from the APC system by an induced draft fan before being discharged to the atmosphere through a separate flue in the common stack. The stack is 200 ft (61 m) tall and has emission test ports located 52 ft (15.8 m) from the stack base.

PERMIT LIMITS

The facility permit limits, shown in Table 1, are based on each combustor burning 8.33 TPH of MSW having a higher heating value (HHV) of 4500 Btu/lb. During the test program, each train was charged at the rate of 8.33 TPH in order to verify compliance with the regulations.

SAMPLING AND ANALYTICAL PROCEDURES

All sampling and analytical procedures were performed according to established EPA test methods or other acceptable test methods as required by the NYS-DEC. Complete descriptions of all EPA reference methods are given in 40 Code of Federal Regulations Part 60, Appendix A. Testing methods used are given in detail in a protocol approved by NYSDEC January 1989. Table 2 summarizes the test methods used in the test program.

DISCUSSION OF TEST RESULTS

Tables 3 and 4 show the MSW charging feed rates for both units. Tables 5 through 15 list the summary of the test results showing the permit limits and the

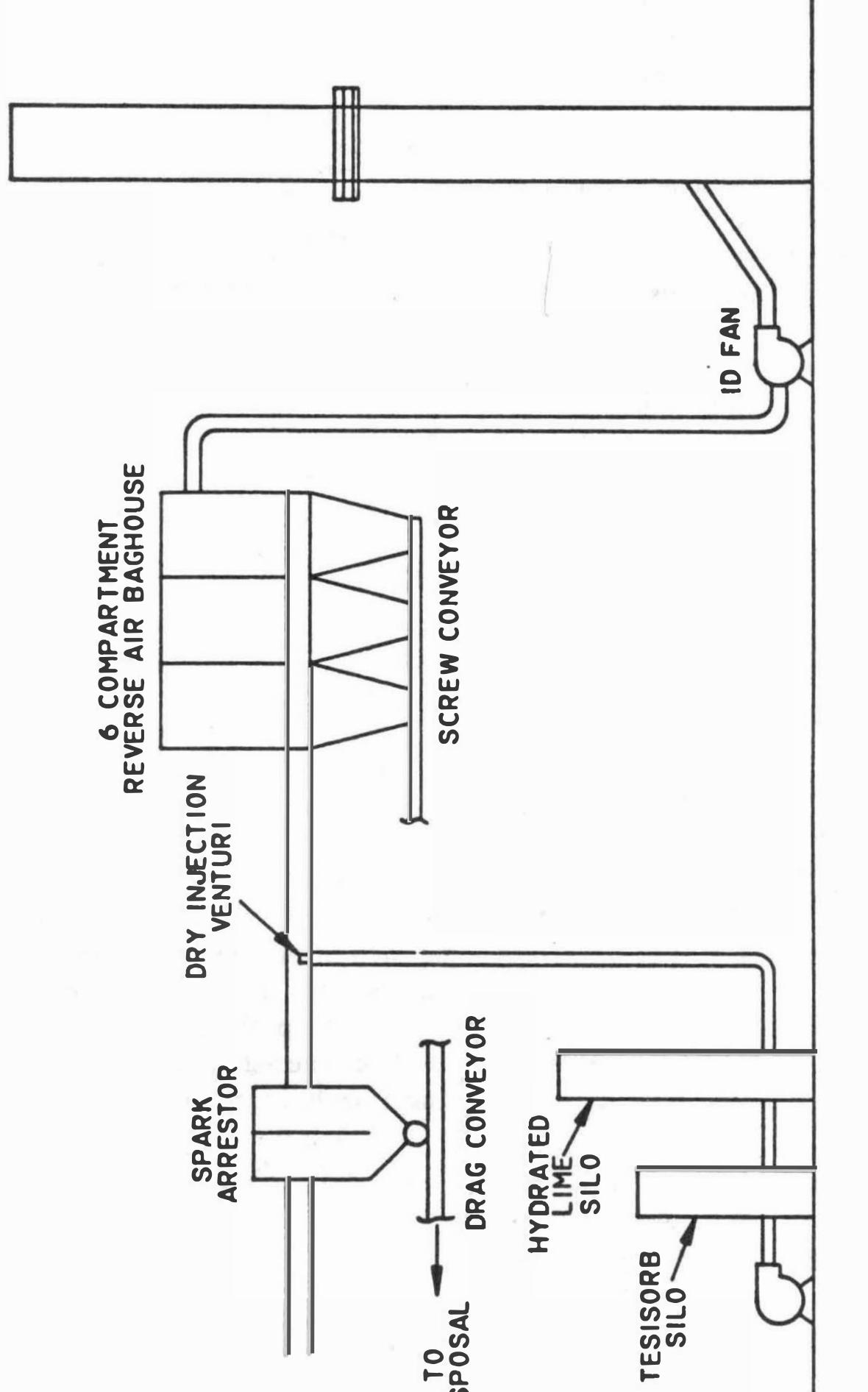
TABLE 1	PERMIT LIMITS FOR THE DUTCHESS
COUNTY	RRF AT THE MAXIMUM FEED RATE
	8.33 TPH @ 4500 Btu/lb

	Permitted Limits
Pollutant	Per_Train_(Hourly_Average)
Particulate Matter	2.5 lbs/hr
S0 ₂	105 ton/year (25 lbs/hr)
NOx	25 lbs/hr
CO	170 ppm (actual emissions)*
Lead	0.42 lbs/hr
Mercury	0.08 lbs/hr
Beryllium	0.29x10 ⁻⁴ 1b/hr
Hydrogen Flouride	0.83 lbs/hr
Hydrocarbons	4.0 lbs/hr
Hydrogen Chloride	33.0 lbs/hr
TCDD	7.77x10 ⁻⁷ lb/hr
2,3,7,8-TCDD	7.77x10 ⁻⁸ lb/hr

* 8 hour running average; approximately equal to 240 ppm corrected to 7% 02

average for each unit. The data presented in Tables 5– 15 are given as the hourly averages for each measured pollutant or the required test period as in the case of some metals and dioxins and furans.

As can be seen in Table 5, five separate tests showed noncompliance with the permit limits for particulate matter on Unit 2. The particulate emissions from Unit 2 averaged 5.9 lb/hr (2.68 kg/h) during the tests conducted on January 31 and February 1 and 2. The baghouse on Unit 2 had a number of operational problems that occurred mainly because of the "increased cleaning cycle time" that was set to attempt to increase reduction of SO₂ emissions. Three hoppers were completely full of ash and a number of broken bags were located in one compartment. The baghouse compartments were taken off-line, one-by-one, to determine and fix the problem and bring the compartment back on-line. The ash buildup problems that occurred were most likely because of one or more of the following:


(a) Ash bridging in the hopper.

(b) Ash plugging in the screw conveyor located below the three hoppers.

(c) Ash plugging on the transfer screw conveyor.

(d) Ash plugging in the rotary valve that feeds into the drag conveyor.

The plant maintenance engineers thoroughly inspected Unit 2 baghouse on February 13 and 14, and again in early March to make sure that all hoppers and conveyors were free of ash, that bags were attached to the thimbles, and that no broken bags existed in the unit. At the request of the Dutchess County Agency, additional testing was conducted in March to verify compliance with the permit conditions. These results are also presented in Table 5.

10 N

SCHEMATIC OF THE APC SYSTEM AT DUTCHESS COUNTY RRF FIG. 2

TO ... H

Pollutant	Sampling Method	Analysis Method	Number of Tests
Particulate Matter	EPA RM 5	EPA RM 5	3 on each train
so ₂	EPA RM 6C	CEM (Pulsed Fluorescence)	CEM installed on each train for 8 hours
NOx	EPA RM 7E	CEM Instrument (Chemiluminescence)	CEM installed on each train for 8 hours
CO	EPA RM10	CEM (NDIR)	Plant CEM on each train
Visible (opacity)	EPA RM 9		3 on each train, simultaneously with RM 5 runs
HCl	Modified RM 5 0.1 N NaOH in impingers	Ion Chromotography	3 on each train, part of RM 5 runs
HF	EPA RM 13	Ion Selective Electrode	3 on each train
НС	EPA RM 25A	Flame Ionization Detector	CEM installed on each train for 8 hours
Lead Mercury	Multi Metals Train Multi Metals Train	ICP Analysis Cold Vapor Atomic Adsorption	3 on each train 3 on each train
Beryllium	EPA Method 104	ICP Analysis	3 on each train
Dioxins/Furans PCDD/PCDF 2, 3, 7, 8 TCDD	Modified Method 5 Train	SW846-8290	3 on each train
Other organics: PAH, CP, CB, PCBs	Modified Method 5 Train	SW846-8270 PCBs by EPA 680	3 on each train (same train use for dioxin/furan sampling)

TABLE 2 SAMPLING AND ANALYTICAL METHODS

TABLE 3 DUTCHESS COUNTY RRF MSW THROUGHPUT SUMMARY — UNIT 1

Date	Test	Time [aily Amount Tons	Burned	Hourly Rate (T
			12 - 14 A A A A A A A A A A A A A A A A A A		
01/31	19:30	- 20:45	192		B.00
02/01	10:00	- 17:10	187		7.79
02/02	14:33	- 20:16	203		8.46
02/03	09:10	- 10:10	210		8.75
02/94	12:57	- 18:36	214		8.91
02/05	09:28	- 16:11	199		8.29
02/06	09:09	- 19:22	N/A		N/A
02/07	09:31	- 11:45	N/A		N/A
02/16	09:55	- 13:55	217		9.04
02/17	09:12	- 21:25	237		9.89
03/16	10:00	- 12:59	182		8.26
05/24	10:17	- 14:25	189		7.88
		Avera	je: 203		8.53

 TABLE 4
 DUTCHESS COUNTY RRF MSW

 THROUGHPUT SUMMARY — UNIT 2

Test Time	Daily Amount Burned Tons	Hourly Rate (TPH)
10:20 - 17:27	204	8.5
08:16 - 19:20	189	7.88
08:39 - 20:29	208	8.67
No Testing	210	8.75
10:00 - 19:05	215	8.96
09:19 - 16:30	204	8.5
09:58 - 12:14	N/A	N/A
09:20 - 13:30	228	9.48
08:43 - 21:11	230	9.59
10:52 - 19:59	193	7.97
8:20 - 17:38	186	7.67
08:32 - 17:20	226	9.41
Averag	e: 208	8.67
	10:20 - 17:27 08:16 - 19:20 08:39 - 20:29 No Testing 10:00 - 19:05 09:19 - 16:30 09:58 - 12:14 09:20 - 13:30 08:43 - 21:11 10:52 - 19:59 8:20 - 17:38 08:32 - 17:20	Tons 10:20 - 17:27 204 08:16 - 19:20 189 08:39 - 20:29 208 No Testing 210 10:00 - 19:05 215 09:19 - 16:30 204 09:58 - 12:14 N/A 09:20 - 13:30 228 08:43 - 21:11 230 10:52 - 19:59 193 8:20 - 17:38 186 08:32 - 17:20 226

N/A - Not Available

N/A - Not Available

TABLE 5 SUMMARY OF PARTICULATE EMISSIONS DUTCHESS COUNTY RESOURCE RECOVERY FACILITY

<u>Date</u>	<u>Unit</u>	Gas Flow Rate dscfm	Concentration gr/dscf @ 7% O2	Mass Rate]b/hr	Permit Limit lb/hr
2/1	1	21400	0.0157	2.37	2.5
2/1	1	23560	0.0108	1.85	2.5
2/1	1	24030	0.0041	0.667	2.5
5/11	1	27766	0.0073	1.438	2.5
5/11	1	25435	0.0056	1.024	2.5
5/11	1	26406	0.0088	1.422	2.5
	Avera	age Unit 1 :	0.0087	1.462	2.5
1/31	2	23740	0.0386*	6.38	2.5
1/31	2	23360	0.0392*	5.98	2.5
2/1	2	24510	0.0309*	5.32	2.5
2/2	2	24480	0.0357*	6.08	2.5
3/15		24100	0.0081	1.37	2.5
3/15	2	23272	0.0306*	5.10	2.5
3/15	2	20682	0.0131	2.00	2.5
3/16	2	23950	0.0057	0.967	2.5
3/16	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23174	0.0084	1.46	2.5
3/16	2	22953	0.0079	1.25	2.5
5/12	2	25153	0.0048	0.97	2.5
5/12	2	26127	0.0048	0.95	2.5
5/12	2	26765	0.0053	1.07	2.5
5/15	2	26461	0.0102	1.77	2.5
5/15	2	25511	0.0095	2.11	2.5
5/15	2	22407	0.0111	1.97	2.5
5/23	2	24422	0.0113	1.92	2.5
5/23	2	24040	0.0088	1.41	2.5
5/25		26070	0.0093	1.69	2.5
5/25	2	25548	0.0090	1.51	2.5
5/25	2	25302	0.0098	1.89	2.5
(exclu		nge Unit 2 : 31 - 2/2 tests}	0.0098	1.73	2.5

* High particulate emissions because of baghouse operational problems.

TABLE 6 SUMMARY OF SULFUR DIOXIDE EMISSIONS — UNIT 1 (1 hr AVERAGES) DUTCHESS COUNTY RESOURCE RECOVERY FACILITY

Date	Gas Flow Rate dscfm	Concentration ppmdv @ 7% O2	Mass Rate 	Permit Limit <u>lb/hr</u>
1/31	22604	66	8.2	25
1/31	22604	94	11.8	25
1/31	20242	100	14.6	25
1/31	20153	85	12.6	25
1/31	20153	113	13.0	25
1/31	20153	69	9.3	25
1/31	21700	151	21.9	25
1/31	21700	137	18.9	25
1/31	21700	126	17.0	25
1/31	21700	158	23.5	25
1/31	21700	118	19.3	25
2/1	21700	81	10.4	25
2/2	24032	198	36.6	25
2/2	24032	27	10.5	25
2/2	24032	26	6.1	25
2/2	24215	169	36.3	25
2/3	22874	75 83	17.0	25
3/16	25805 25805	129	14.8	25
3/16			23.8	25
3/16 3/16	25805 21535	104 101	23.7 18.5	25 25
5/10	N/A	54	N/A	25
5/11	N/A	65	N/A	25
5/11	N/A	58	N/A	25
5/11	N/A	63	N/A	25
5/11	N/A	127	N/A	25
5/11	N/A	74	N/A	25
5/16	N/A	95	N/A	25
5/16	N/A	72	N/A	25
5/16	N/A	63	N/A	25
5/16	N/A	72	N/A	25
5/17	N/A	44	N/A	25
5/17	N/A	44	N/A	25
5/17	N/A	67	N/A	25
5/17	N/A	64	N/A	25
5/24	N/A	58	N/A	25
5/24	N/A	76	N/A	25
5/24	N/A	54	N/A	25
5/24	N/A	55	N/A	25
5/24	N/A	61	N/A	25
5/24	N/A	50	N/A	25
5/24	N/A	56	N/A	25
	Average :	85	17.5	25

N/A = Not Available

TABLE 7 SUMMARY OF SULFUR DIOXIDE EMISSIONS — UNIT 2 (1 hr AVERAGES) DUTCHESS COUNTY RESOURCE RECOVERY FACILITY

Date	Gas Flow Rate dscfm	Concentration ppmdv @ 7% O2	Mass Rate 	Permit Limit <u>lb/hr</u>
2/1	23032	81	15.3	25
2/1	23032	62	8.9	25
2/1	26550	86	19.2	25
2/1	26550	161	34.3	25
2/1	26550	184	38.3	25
2/2	24482	207	41.2	25
2/2	24482	120	23.9	25
2/5	23193	175	37.8	25
2/5	23193	118	25.4	25
2/5	23193	103	20.7	25
2/5	23757	94	19.6	25
2/5	23757	133	28.9	25
2/5	23757	151	32.0	25
2/6	24644	128	22.1	25
2/6	24644	85	14.9	25
2/6	24644	94	18.1	25
2/7	22004	145	23.8	25
2/7	22004	122	23.0	25
3/15	20682	49	7.9	25
3/15	20682	106	19.2	25
3/15	20682	128	24.4	25
3/16	23174	144	29.1	25
3/16	23174	109	20.4	25
5/12	N/A	79	N/A	25
5/12	N/A	72	N/A	25
5/12	N/A	83	N/A	25
5/12	N/A	72	N/A	25
5/12	N/A	66	N/A	25
5/12	N/A	57	N/A	25
5/15	N/A	58	N/A	25
5/15	N/A	56	N/A	25
5/15	N/A	50	N/A	25
5/15	N/A	84	N/A	25
5/15	N/A	104	N/A	25
5/15	N/A	76	N/A	25
5/16	N/A	77	N/A	25
5/16	N/A	74	N/A	25
5/16	N/A	91	N/A	25
5/16	N/A	72	N/A	25
5/17	N/A	115	N/A	25
5/17	N/A	72	N/A	25
5/17	N/A	100	N/A	25
5/17	N/A	119	N/A_	25
	Average :	101	23.8	25

N/A = Not Available

Since the February test program, a number of changes have been made to the plant to remedy the problems that existed in the baghouse on Unit 2. The baghouse cleaning cycle controls have been modified so that cleaning is initiated on a pressure drop demand of 5 in. of water (1.24 kPa) for each compartment. If the pressure drop does not reach 5 in. of water within 2 hr of the previous cleaning cycle, cleaning is automatically initiated. Westinghouse believes that these changes will enable the baghouse to operate without causing a hopper to become overloaded with dust.

The dry injection system was designed to reduce acid gas (mainly HCl) to protect downstream equipment such as the ductwork, ID fan and flue lining from corrosion problems. In addition to removing HCl, some SO₂, HF and sulfuric acid mist are also removed from the flue gas. A number of tests were conducted to characterize the SO₂ emissions at the inlet of the dry injection system. The inlet SO₂ emissions were typically in the range of 100–200 ppm, @ 7% O₂. As shown by the data presented in Tables 6 and 7, the

Date	Gas Flow Rate	Actual Concentration ppmdv	Permit Limit ppmdv*
1/31 1/31 1/31 1/31 2/1 2/2 2/2 2/2	22604 20242 20153 21700 21700 22268 24032 24032 24032 24215	101 100 127 46 51 93 128 144 126	170 170 170 170 170 170 170 170 170
2/3 2/16 2/17 3/16 3/16 3/16	22874 23070 24286 25805 25805 25805	309 130 131 238 51 214	170 170 170 170 170 170
3/16 5/24 5/24 5/24	21535 N/A N/A N/A	67 74 48 138	170 170 170 170 170
	Average Unit 1 :	122	170

TABLE 8 SUMMARY OF CO EMISSIONS — UNIT 1 (1hr AVERAGES) DUTCHESS COUNTY RESOURCE RECOVERY FACILITY

* Equals approximately 240 ppm corrected to 7% O_2 .

N/A = Available

 SO_2 was reduced by approximately 35–50%. The uncontrolled HCl levels were not determined during the test program. However, based on test data accumulated from similar WTE plants, the HCl removal efficiency is estimated to be in the range of 50–75%. (HCl data are shown in Tables 14 and 15.)

A program is currently being developed to fine-tune the dry injection and baghouse system. A continuous emission monitor to measure SO_2 emissions at the baghouse outlet from both units has been installed. The lime and Tesisorb feed rates will be adjusted and the corresponding SO_2 emissions will be recorded. Test program data are expected to be available in early 1990.

Carbon monoxide emission levels averaged 124 ppmdv, ranging from 46 to 309 ppmdv from both units during the January/February compliance test program, as shown in Tables 8 and 9. During April 1989, two changes were made to improve combustion and reduce CO emission levels. First, the axial seals, used to seal the individual windbox sections on the combustor, were replaced with an improved-design seal. Second, a deflector plate to cause ash to be spread evenly across the after burning grate was installed. Both of these changes improved combustion conditions and lowered the CO emission levels. CO emission levels ranged from 48 to 170 ppmdv during the May Com-

TABLE 9 SUMMARY OF CO EMISSIONS — UNIT 2 (1hr AVERAGES) DUTCHESS COUNTY RESOURCE RECOVERY FACILITY

<u>Date</u>	Gas Flow Rate dscfm	Actual Concentration ppmdv	Permit Limit <u>pomdv*</u>
2/1	26550	157	170
2/1	26550	102	170
2/2	24481	150	170
2/2	24481	128	170
2/5	23193	278	170
2/16	20460	142	170
2/16	20460	153	170
2/17	27540	174	170
2/17	27540	259	170
2/17	27540	103	170
2/17	29590	228	170
3/15	20682	64	170
3/15	20682	52	170
3/15	20682	55	170
3/16	23174	51	170
3/16	23174	30	170
3/16	22953	45	170
5/24	N/A	170	170
5/25	N/A	106	170
5/25	N/A	73	170
5/25	N/A	103	170
	Average Unit 2 :	125	170

* Equals approximately 240 ppm corrected to 7% 02.

N/A = Not Available

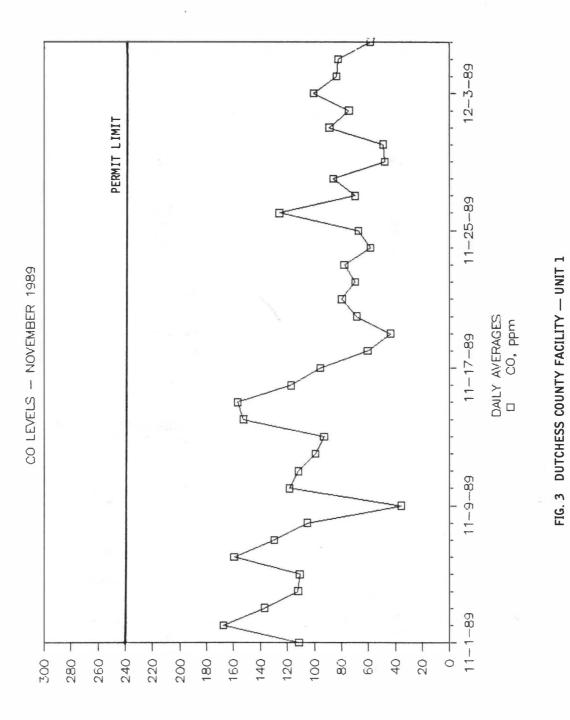

Unit 1	L				
				Permit	Values
		2378-TCDD	Total TCDD	2378-TCDD	Total TCDD
Date	Time	lb/hr	1b/hr	1b/hr	1b/hr
		- 140			
2/16	9:55-13:55	0	2.40E-08	7.77E-08	7.77E-07
2/17	9:12-13:16	0	6.60E-09	7.77E-08	7.77E-07
2/17	16:46-21:25	0	2.50E-08	7.77E-08	7.77E-07
Averag	je:	0	1.85E-08		
Unit 2	2				
2/16	9:20-13:30	0	4.76E-08	7.77E-08	7.77E-07
2/17	8:43-13:09	0	5.53E-08	7.77E-08	7.77E-07
2/17	15:50-20:11	3.77E-09	9.05E-08	7.77E-08	7.77E-07
Averag	je:	1.26E-09	6.45E-08		

TABLE 10 DIOXIN EMISSION COMPLIANCE TEST

RESULTS — SUMMARY

pliance test program. Recent CO emission levels from Unit 1 measured by the installed continuous monitor are shown in Fig. 3 (daily averages).

Dioxin and furan emissions were measured on February 16 and 17, 1989 and are reported in Tables 10– 12. Dioxin and furan emissions are reported as

70 %/ @ wdd

412

					2378-TCDD	2376	2378-TCDD TOXIC EQUIVALENCIES		VCI ES
	(ng/N	LUNCENIKATION MJ. adjusted to 7 RUN 2 RUN		percent 02) 3 AVERAGE	EQUIVALENCY FACTOR	(ng/Nm3, RUN I I			percent D2) 3 AVERAGE
DIDXINS	000 0	000 0	000 0		-	0000	0000 0	0000 0	0000 0
Other ICDD	0. 149	0, OBB	0.339	0.258	0.01	0.0035	0.000	0.0034	0.0026
12378-PCDD	000.000	0.000	0.020	0.007	0.5	0.0000	0,0000	0.0099	0.0033
D+her PCDD	0.857	0.483	0.200	0.513	0.005	0.0043	0.0024	0.0010	0.0026
123478-HKCDD	0.000	0.000	0.000	0.000	0.04	0.0000	0.0000	0.0000	0.0000
123678-HxCDD	0.089	0.057	0.000	0.049	0.04	0.0036	0.0023	0.0000	0.0019
123789-HxCDD	0.000	0.048	0.000	0.016	0.04	0.0000	0.0019	0.0000	0.0006
Other HxCDD	1.055	0.756	0.513	0.775	0.0004	0.0004	0.0003	0.0002	0.0003
1234678-HpCDD	0.562	0.408	0.259	0.410	0.001	0.0006	0.0004	0.0003	0.0004
Other HpCDD	0.000	0.441	0.000	0.147	0.00001	0.0000	0.0000	0.0000	0.0000
000	0.441	0.403	0.000	0.281	0	0.0000	0.0000	0.0000	0,0000
TOTAL PCDD	3, 354	2.683	1.331	2.456		0.0123	0.0082	0.0148	0.0118
FURANS									
2378-TCDF	0.086	0.033	0.042	0.054	0.1	0.0086	0.0033	0.0042	0.0054
Other ICDF	1.896	0.875	0.635	1.136	0.001	0.0019	0.0009	0.0006	0.0011
12378-PCDF	0.000	0.053	0.046	0.033	0.1	0.0000	0.0053	0.0046	0.0033
23478-PCDF	0.102	0.084	0.000	0.062	0.1	0.0102	0.0084	0.0000	0.0062
Other PCDF	0.543	0.724	0.429	0.565	0.001	0.0005	0.0007	0.0004	0.0006
123478-H×CDF	0.073	0.000	0.048	0.040	0.01	0.0007	0.0000	0.0005	0.0004
123678-HxCDF	0.055	0.000	0.036	0.030	0.01	⊆000 ° 0	0.0000	0.0004	0.0003
234678-H*CDF	0.045	0.000	0.000	0.015	0.01	0.0005	0.000	0.000	0.0002
1 23 7H9-H×CDF	0.000	0.000	0.000	0.000	0.01	0.0000	0.0000	0.000	0.000
Dther HxCDF	0. 233	0.113	0.118	0.155	0.0001	0.0000	0.0000	0.0000	0.0000
1 2346/8-HpCDF	0.000	0.086	0.086	10.0	0.001	0.0000	0.0001	0.000	0.000
	0.000	0.00	0.000	0.000	10000	0,000			0,000
OCDF PDCOT	0.000	0.000	0.000	0.000	0	0.000	0.000	0.0000	0.0000
TOTAL PCDF	3.033	1.998	1.470	2.167		0.023	0.019	0.011	0.017
TOTAL PCDD+PCDF	6.387	4.682	2.801	4.623		0.0353	0.0269	0.0255	0.0292
MASS EMISSIONS RATES	ATES - LB/HR								
	RUN 1	RUN 2	RUN 3	AVERAGE					
2378-TCDD	0.00E+00	0. 00E + 00	0. 00E + 00	0.00E+00					
TOTAL TCDD	2.40E-08	6.60E-09	2. SOE-08	1.856-08					
TOTAL TCDD AS 2378-TCDD EQUIVALENT	2.40E-10	6.60E-11	2.50E-10	1.85E-10					

			CONCENTRAT ION		2378-TCDD TOXIC	2378-	2378-TCDD TOXIC EDUIVALENCIES CONCENTRATION	EQUIVALE ATION	ICI ES
	RUN 1	2	adjusted to 7 per UN 2 RUN 3	percent O2) 3 AVERAGE	EQUIVALENCY FACTOR	(ng/Nm3, RUN 1			percent 02) 3 AVERAGE
DIOXINS									
2378-TCDD	0.000	0.000	0.042	0.014	1	0.0000	0.0000	0.0423	0.0141
Other TCDD	0.806	0.673	0.972	0.817	0.01	0.0081	0.0067	0.0097	0.0082
12378-PCDD	0.086	0.129	0.000	0.072	0.5	0.0429	0.0644	0.0000	0.0358
Other PCDD	0.658	1.158	0.826	0.881	0.005	0.0033	0.0058	0.0041	0.0044
123478-HxCDD	0.044	0.036	0.043	0.041	0.04	0.0018	0.0014	0.0017	0.0016
123678-H#CDD	0.118	0.000	0.098	0.072	0.04	0.0047	0.0000	0.0039	0.0029
123789-HxCDD	0.000	0.137	0.155	0.097	0.04	0.0000	0.0055	0.0062	0.0039
Other HxCDD	0.905	1.120	1.112	1.045	0.0004	0.0004	0.0004	0.0004	0.0004
1234678-HpCDD	0.701	0.494	0.512	0.569	0.001	0.0007	0.0005	5000°0	0.0006
Other MpCDD OCDD	0.764	0.531	0.476	0.542	0.00001 0	0.0000	0.0000	0.0000	0.0000
TOTAL PCDD	4.699	4.278	4.807	4.595		0.0618	0.0848	0.0690	0.0719
FURANS									
2378-TCDF	0.341	0.382	0.284	0.336	0.1	0.0341	0.0382	0.0284	0.0336
Other TCDF	3.036	1.911	6.811	3.919	0.001	0.0030	0.0019	0.0068	0.0039
12378-PCDF	0.279	0.298	0.272	0.283	0.1	0.0279	0.0298	0.0272	0.0283
23478-PCDF	0.441	0.393	0.375	0.403	0.1	0.0441	0.0393	0.0375	0.0403
Other PCDF	3.108	3.014	2.837	2.986	0.001	0.0031	0.0030	0.0028	0.0030
123478-H×CDF	0.295	0.284	0.295	0.291	0.01	0.0029	0.0028	0.0030	0.0029
123678-HxCDF	0.211	0.000	0.180	0.130	0.01	0.0021	0.0000	0.0018	0.0013
234678-H×CDF	0.214	0.190	0.199	0.201	0.01	0.0021	0.0019	0.0020	0.0020
1 23789 Hx CDF	0.000	0.000	0.017	0.006	0.01	0.0000	0.0000	0.0002	0.0001
Dther MxCDF	1.025	1.077	0.978	1.027	0.0001	0.0001	0.0001	0.0001	0.0001
1234678-HoCDF	0.415	0.342	0.336	0.364	0.001	0.0004	0.0003	0.0003	0.0004
1234789-HpCDF	0.000	0.000	0.062	0.021	0.001	0.0000	0.0000	0.0001	0.0000
Other MpCDF Arne	0. 380	0.118	0. 263	0.254	0.00001	0.0000	0.0000	0.0000	0.000
	077.0	••••	0.112		>	0,000	0.000		0000
TDTAL PCDF	9.965	8,008	13.021	10.331		0.120	0.117	0.110	0.116
TOTAL PCDD+PCDF	14.664	12.286	17.828	14.926		0.1818	0.2022	0.1791	0.1877
MASS EMISSIONS RATES	ates - LB/HR	~							
	RUN 1	RUN 2	RUN 3	AVERAGE					
2378-TCDD	0.00E+00	0.00E+00	3. 77E-09	1.26E-09					
TOTAL TCDD	4.76E-08	5.536-08	9. 05E-0B	6.45E-08					
TOTAL TCDD AS 2378-TCDD EGUIVALENT	4.76E-10	5.53E-10	4.64E-09	1.896-09					

TABLE 12 PCDD/PCDF EMISSIONS FOR UNIT 2

TABLE 13 SUMMARY OF NO, EMISSIONS (1 hr AVERAGES) DUTCHESS COUNTY RESOURCE RECOVERY FACILITY

Date	Unit	Gas Flow Rate	Concentration ppmdv @ 7% O2	Mass Rate	Permit Limit <u>lb/hr</u>
1/31	1	22604	114	10.2	25
1/31	1	22604	127	11.5	25
1/31	1	20242	67	7.0	25
1/31	1	20153	87	7.1	25
1/31	1	20153	96	9.2	25
1/31	1	21700	92	9.4	25
1/31	1	21700	88	8.7	25
1/31	1	21700 21700	101 97	9.8	25
1/31 1/31	1	21700	58	10.3 6.8	25 25
2/1	1	22268	108	10.4	25
2/2	i	24032	105	14.1	25
2/2	î	24032	94	13.4	25
2/2	î	24215	97	14.2	25
2/3	1	22874	79	12.8	25
,					
	Ave	rage Unit 1 :	94	10.3	25
2/1	2	23032	88	13.7	25
2/1	2	23032	91	9.5	25
2/1	2	26550	100	15.6	25
2/1	2	26550	101	15.8	25
2/1	2	26550 24482	101 107	15.1	25
2/2 2/2	2	24482	107	15.2	25
2/5	2	23193	88	13.7	25
2/5	2	23193	90	14.0	25
2/5	2	23193	109	15.6	25
2/5	2	23757	107	16.0	25
2/5	2	23757	96	15.0	25
2/5	2	23757	91	13.8	25
2/6	2	24644	108	13.2	25
2/6	2	24644	113	14.1	25
2/6		24644	104	14.6	25
2/6	2	24644	90	12.8	25
2/7	2	22004	113	13.2	25
2/7	2	22004	112	15.2	25
	Avera	age Unit 2 :	101	14.3	25

TABLE 14 SUMMARY OF OTHER EMISSIONS — UNIT 1 DUTCHESS COUNTY RESOURCE RECOVERY FACILITY

Date	Gas Flow Rate dscfm	Mass Rate 1b/hr	Permit Limit <u>lb/hr</u>	Concentration ppmdv @ 7% O2
1/31 2/1 2/2	21700 22268 24398	0.026 0.006 <u>0.005</u>	0.83 0.83 <u>0.83</u>	0.397 0.106 <u>0.079</u>
	Average :	0.012	0.83	0.194
2/1 2/1 2/2 5/11 5/11 5/11	21400 23560 24030 27766 25435 26406	7.2 2.0 0.25 19.55 24.79 <u>20.82</u>	33 33 33 33 33 <u>33</u>	70.0 17.7 2.4 151.0 203.9 <u>192.9</u>
	Average :	12.44	33	106.3
2/4 2/4 2/4	22960 22700 24727	2.4 3.3 <u>3.2</u>	4 4 <u>4</u>	16 21 <u>21</u>
	Average :	3.0	4	19
2/6 2/6 2/7	20620 23371 22959	ND ND ND	2.9x10-5 2.9x10-5 2.9x10-5	
	Average :		2.9x10-5	
2/5 2/5 2/6	21716 23231 21269	0.00245 0.00311 <u>0.00294</u>	0.42 0.42 <u>0.42</u>	
	Average :	0.00283	0.42	
2/5 2/5 2/6	21716 23231 21269	0.0665 0.0925 <u>0.0774</u>	0.08 0.08 <u>0.08</u>	
	Average :	0.0788	0.08	
	1/31 2/1 2/1 2/2 5/11 5/11 5/11 5/11 5/11 5	Date dscfm 1/31 21700 2/1 22268 2/2 24398 Average : 2/1 2/1 2460 2/2 24030 5/11 2560 2/2 24030 5/11 25435 5/11 25406 Average : 2/4 2/4 22960 2/4 22700 2/4 22700 2/4 44727 Average : 2/2 2/6 20620 2/7 22959 Average : 2/5 2/5 21716 2/5 21269 Average : 2/5 2/5 21716 2/5 21716 2/5 21716 2/5 21716 2/5 21269 Average : 2 2/5 21716 2/5 21269 Average : 2	Date dscfm 1b/hr 1/31 21700 0.026 2/1 22268 0.005 2/2 24398 0.005 Average: 0.012 2/1 23560 2.0 2/2 24030 0.25 5/11 2766 19.55 5/11 2766 20.82 Average: 12.44 2/4 22960 2.4 2/4 22700 3.3 2/4 22700 3.3 2/4 22700 3.0 2/6 20620 ND 2/7 22959 ND 2/7 22959 ND 2/7 22959 ND 2/7 22331 0.00241 2/5 21716 0.00283 2/5 21716 0.00283 2/5 21716 0.00283 2/5 21716 0.00283 2/5 21716 0.00258 2/5<	Gas Flow Rate dscfm Mass Rate lb/hr Limit lb/hr 1/31 2/1 22268 2/2 0.026 2/389 2/2 0.83 0.005 0.83 2/1 22268 0.005 0.83 0.035 2/1 224398 2/2 0.005 0.83 0.83 2/1 21400 2.24398 7.2 0.025 33 3.3 2/1 23560 2.0 2.0 3.3 33 5/11 2/2 24030 0.25 0.25 3.3 33 5/11 25435 24.79 3.3 33 4 4 2/4 Average : 12.44 33 2/4 22700 3.3 4 4 2/4 22700 3.3 4 4 2/4 22700 3.3 4 4 2/4 22700 2.9x10-5 2.9x10-5 2/7 22959 ND 2.9x10-5 2/7 22959 ND 2.9x10-5 2/7 22959 ND 2.9x10-5 2/5 21716 0.00245 0.42 2/5 21716 0.00283 0.42 2/5 21716 0.00283 0.42

Note - Hydrocarbon mass emissions are expressed in terms of n-propane.
 ND = Not Detected; Detection limit = 3.8x10-8 lb/hr (0.001 ug/ml).

TABLE 15 SUMMARY OF OTHER EMISSIONS — UNIT 2 DUTCHESS COUNTY RESOURCE RECOVERY FACILITY

Pollutant	Date	Gas Flow Rate	Mass Rate 	Permit Limit <u>lb/hr</u>	Concentration ppmdv @ 7% 02
HF	1/31 1/31 1/31	24705 23534 24738	0.004 0.004 0.003	0.83 0.83 <u>0.83</u>	0.071 0.060 <u>0.051</u>
		Average :	0.004	0.83	0.061
HC1	1/31 1/31 2/1 2/2	23740 23360 24510	23.0 42.7 8.9	33 33 33 33	209 422 78
	3/15 3/15 3/15	24480 24100 23272 20682	2.7 14.0 7.6 8.1	33 33 33	23 124 70 80
	5/15 5/15 5/15	26461 25511 22407	20.6 22.9 <u>23.6</u>	33 33 <u>33</u>	180 157 200
		Average :	17.4	33	154
HC*	2/16 2/16 2/17	20460 20460 29590	2.1 3.4 2.4	4 4 <u>6</u>	16 29 <u>13</u>
		Average :	2.6	4	19
B eryllium	2/5 2/5 2/6	23193 23757 24644	ND ND ND	2.9x10-5 2.9x10-5 <u>2.9x10-5</u>	
		Average :		2.9x10-5	
Lead	2/2 2/4 2/4	22639 23718 23014	0.00158 0.00578 <u>0.00352</u>	0.42 0.42 <u>0.42</u>	
		Average :	0.00363	0.42	
Mercury	2/2 2/4 2/4	22639 23718 23014	0.00243 0.00733 0.00889	0.08 0.08 <u>0.08</u>	
		Average :	0.00622	0.08	

* Note - Hydrocarbon mass emissions are expressed in terms of n-propane.

ND = Not Detected; Detection limit = 3.8x10-8 lb/hr (0.001 ug/ml).

2,3,7,8—TCDD toxic equivalents, combining both PCDD and PCDF total emissions. The emissions measured were extremely low and averaged 0.0292 ng/Nm³ @ 7% O_2 for Unit 1 and 0.1877 ng/Nm³ @ 7% O_2 for Unit 2.

These values are similar to dioxin and furan emission rates reported at other well-operated, modern WTE facilities.

Other emission data reported—including NO_x , lead, beryllium, mercury, hydrogen chloride, hydrogen flouride, and hydrocarbons—show that the facility is in compliance with permit limits for these pollutants (see Tables 13–15).

CONCLUSION

The Dutchess County Resource Recovery Facility has passed all of the emission compliance tests as required by the NYSDEC. A continuous emission monitor is currently being installed to continuously measure SO₂ emissions to verify that the facility does not emit more than 210 tons of SO₂ per year, which is the facility annual emission limit. After installation of the SO₂ monitor is completed, certification tests will be conducted on the SO₂, NO_x, O₂ and opacity analyzers according to 40 CFR Part 60 Appendix B. An-

nual compliance for SO_2 emissions will then be determined by the continuous monitor. The CO analyzers have been installed and calibrated in conformance with the manufacturer's recommendations as required by the permit.

Key Words: Air Quality; Emissions; Incineration; Performance; Permits; Testing

416