MODERNIZING AND USING THE PROJECT CONTROL DOCUMENT

H. GREGOR RIGO AND MICHAEL D. CARTER

Rigo & Rigo Associates, Inc.

Berea, Ohio

ABSTRACT

The Project Control Document [PCD] is a management tool. It is a total presentation of all the key project characteristics and decisions along with a codification of the rationale, inter-relationships and impacts of each attribute. When the PCD is augmented by an integrated technical, economic, and financial computer model which incorporates structural, performance and cost characteristics, an integrated system is created which rapidly identifies and quantifies the cascading impact of decisions and changes as a project evolves. This integrated system is the Modernized Project Control Document [MPCD]. The ramifications of the project's modifications and changes can be evaluated as the project becomes better defined and developed. Decisions can be tested (from fairly early stages) using investment criteria and sensitivity analysis as supplemental criteria for waste management system optimization. Violation of legal, public, business or financing requirements and preferences are immediately flagged so that remedial action and changes in project definition can be made.

INTRODUCTION

Developing a resource recovery facility is a long, complex process which is repeatedly subject to unexpected outside influences. The Project Control Document (PCD) is a valuable tool that helps management through this process because it permits the rapid, quantitative assessment of the impact of changes, suggestions, and alternatives.

The traditional PCD can be modernized with the aid of computers by reducing the information to mathematical models that are linked and forced to interact within the framework of an integrated computer system. Both the PCD narrative and the derived computer model are then used for management control during the various stages of the project. While computers are commonly used to analyze portions of projects, the computer model that modernizes the PCD is an integrated system that takes into account technical performance, waste supply, cost, and business relationships in a single system. The Modernized Project Control Document [MPCD] also recognizes technical, environmental, financial, business, public preference and institutional considerations that constrain a project and, during the early planning stage, provides the ability to evaluate changes using the ul-

This paper presents starting assumptions for some of the key, hard-to-analyze areas in addition to the typical information in the MPCD.

161

timate common criterion—money. The MPCD is on hand to evaluate "what ifs" and other events which may affect the project during its development or even after its conclusion.

MODERNIZED PROJECT CONTROL DOCUMENT

The MPCD consists of two major parts: a narrative and an integrated computer model. The narrative describes the complete project in words and pictures and, like the computer model, becomes more detailed as the project progresses. The model quantitatively merges the technical knowledge and financial aspects (including business relationships and constraints as well as economics) of the project defined in the narrative. It provides a comprehensive means of comparing expectations and reality.

The Narrative

A well constructed MPCD narrative contains sections relating to each of the major aspects of a project. The following paragraphs provide a narrative outline for the text of an MPCD.

The Characteristics Section describes the Municipal Solid Waste (MSW) stream to be managed. Definition includes potential waste sources, locations, quantities and qualities. Eventually, business principles for a sponsor-acceptable contract will be replaced by letters of intent and waste supply agreements.

The Available Disposal Methods Section defines where waste is currently being collected and disposed; the cost and longevity of the current disposal point; other area management alternatives, including landfills and resource recovery plants being developed; and source reduction and recycling efforts.

The Alternatives Section provides descriptions of the differing methods that might be used to meet the area's waste management objectives. The comprehensive list is rapidly reduced by first eliminating alternatives which are unacceptable for any reason and by performing screening analyses until a limited number of apparently feasible alternatives for further development emerge. This section is extremely important in a public environment where basic decisions are revisited long after they are made. Ready access to the reason for a prior rejection can show that the process was proper and the alternative remains unattractive.

The Facility Section describes the disposal alternative and includes siting considerations along with other relevant considerations such as access, public utilities availability, geotechnic requirements, zoning, development, and cost. This section forms the basis for an Environmental Impact Statement, permit submittals and facility procurement documents.

The Disposal Section examines the requirements for and availability of feasible residuals management alternatives. It addresses the disposal of residues, including ash and unprocessibles. This section could be the start of another MPCD if a separate ash disposal project is initiated.

The Public Participation Section identifies how the public will provide input into the project, establishes preferences, provides feed-back on how concerns are being addressed and serves as a mandatory check that an acceptable solid waste management project is being pursued.

The Product Sales Section covers steam, electricity, and recycled materials marketing. For each product, quantity, quality, delivery requirements, price, potential purchasers and business deals are considered.

The Regulatory and Planning Section recognizes the legal and regulatory constraints on the project and identifies required approvals, relevant agencies, and local planning requirements. Key technical and philosophical information is accumulated and permit filings and correspondence are eventually added.

The Schedule Section is necessary to ensure project coordination and that deadlines are met. Key "go/no go" decision points and criteria are defined.

The Business Plan Section lays out how the facility will be bought and the risks and guarantees to be provided by the community and supplier.

In the Financial Plan Section, the financing and business criteria that constrain the project are defined.

The Project Economics Section brings together data, from the balance of the document, for evaluation on a common basis—money. The economic performance criteria for the project are established and results from the computer model described later are provided to determine probable economic feasibility.

It is obvious from the information listed under the headings of the MPCD Narrative that, at least in the initial stages, very little precise and accurate information will be available. In the initial stages, statements of legal requirements, policy preferences, public questions indicating a lack of knowledge, or lack of decision, are as important to the control and development of the project as final resolution of these concerns.

The Computer Model

The concepts embodied in the narrative can be expressed as mathematical models and incorporated into

a technical (including environmental), economic and financial computer model that integrates and modernizes the PCD. The computer model begins at a technical level (using the information on solid waste supply, utilities, and equipment characteristics) to define performance expectations for selected operating conditions.

Environmental impacts and health risks are estimated and compared to standards and public opinion. Engineering economics are developed and modeled. All these assessments are brought together in the financial analysis which uses performance, capital and operating cost estimates and inflation and interest rate assumptions to develop debt requirements and long term economics for the assumed procurement approach and business deal.

The initial MPCD computer model uses plug numbers and representative facility performance models to provide initial estimates. As the project evolves, and the MPCD narrative is revised or confirmed by projectspecific negotiations and investigations, the computer model is concurrently refined to provide coordinated real-time monitoring of the project.

The center of the MPCD computer model is a multiyear proforma accrual statement. Meaningful output from the proforma accrual statement requires technical input from process performance models. These same process performance models generate estimates of environmental impacts and required consumables. This paper focuses on the development of a generic MPCD computer model.¹

Technical Models

An analysis which considers the waste collection schedule, the facility configuration, the major component quality and capacities, the energy buyer's characteristics and the facility's maintenance plans is required to effectively predict the amount of waste that can be incinerated by a specific facility (Rigo, 1982; Rigo and Davis, 1984) and the amount of steam that can be used to generate electricity. For usual situations, waste bypass will be minimal as long as the average annual delivery rate is less than 80-85% of the facility's nameplate capacity and storage is provided for 3-4 days of burning capacity. Due to typical turbine generator reliability, it is reasonable to assume that at least 99% of the steam raised will be used to generate electricity except in years when the turbine is scheduled for open shell inspections and repair. For such years, using 11/12 of the annual steam production to generate electricity has proven to be a reasonable assumption.

Once waste is processed, the amount of useful energy recovered depends on two things: the facility type and the required energy product characteristics. The best way to determine energy production rates is to perform a complete engineering system analysis (a step in the development of the facility narrative). Table 1 is a typical boiler heat balance for a 450 TPD mass burning water wall incinerator which produces turbine grade steam. The calculations are conventional and can be found in standard texts (Zerban & Nye, 1964; Combustion Engineering, 1978). For screening purposes, the ultimate fuel analysis can be based on typical moisture and ash free [MAF] characteristics and radiation losses are calculated as double the value estimated using the American Boiler Manufacturer's Association curve (ASME, 1968).

The emission factors shown in Table 2 assume a stoichiometric release of sulfur and chlorine as well as representative values for the nonconservative pollutants. The emission factors can be tailored for specific technology selections for conventional pollutants (Rigo, et al., 1982) and the EPA toxic equivalents and control efficiency for dioxin and furan emissions (Rigo and Markiewicz, 1987).

The fire-side flows developed using the boiler balance can be coupled with a screening level dispersion model such as that proposed by Golomb, et al. (1983) and by using the analytic form of the Pasquill dispersion coefficients suggested by Green, et al. (1980) to rapidly estimate maximum ground level impacts which can be compared to ambient air quality criteria as shown in Table 3. In Table 4, the screening analysis is extended to a comparison of trace element impacts to various metrics, while the carcinogenic risk is calculated using Carcinogenic Assessment Group (USEPA, 1985) methodologies and potency slopes.

Economic and Financial Models

Table 5 is a representative proforma accrual statement which has been generated for a hypothetical 2400 tons per day $[TPD_7]^2$ nameplate capacity waste-to-energy plant that is publicly owned and operated. The facility sells electricity generated from processing an

¹ The outputs shown in this paper were all generated using a 20/ 20 Spread Sheet Program on a DEC PRO 380 minicomputer. We are not aware of any reason why the algorithms can not be adapted for use on other spread sheet systems and microcomputers. The final tailored MPCD computer model for the Southeast Resource Recovery Facility in Long Beach, California takes about 20 min to run.

² The subscript denotes that the value is for a 7-day calendar week as opposed to a 5 or some other work-day week.

TABLE 1 TYPICAL BOILER HEAT BALANCE

		Total Excess Air	63%	Fraction of Ash to Boiler		10%
		fraction air under grate	67%	Grate Ash discharge Temperature		750
		weight flue gas recirculation	n 10%	UBC in Fly ash		8%
		Misc. Steam Leaks & Losses	1.5%	UBC in Bottom Ash		3%
		Blow Down	2.0%	Weight of Residue		23.2%
****** ULTIMATE ANALYSIS *****	*	deNOx Carrier air% of The	4.2%	Average temperature of residue		505
ASH. % hy weight	22.40	General Air leakage-% of The	4.1%	Fraction Combustibles Burnded		98.41%
C. % hu weight	26.78	Main Steam Flow. 1h/hr	155000			
H2. % hu weight	3.84	S.H. outlet press., psig	617	**********		
S % bu weight	0 11	SH outlet temp deg F	752	Hudrochloric Acid		40.97
02 % bu weight	20.21	Feedwater pressnsig	800	Carbon (C)		12.01
N2 % by weight	0 41	Feedwater temp deg F	332	Hudrogen (H2)		2.02
W20 % by weight	26 00	Rebester steam flou lb/br	002	Sulfur (S)		32.07
fl2 % by weight	0.24	Rehtz outlet press psig	ů N			32.00
HU Rtu/1b	4799	Rehtr outlet temp deg F	0	Nitroppo (N2)		28.02
Excess Air Supplied by Excess	C0 9	Pohtr inlat proce price	0	Water (H20)		18 02
Unburged Comb locc %	1 62	Pehtr islet tops dog E	0	Chloring (Cl2)		79 92
UPC is residue "	2 52	Drum proce	725	Carbon Diavida (CD2)		44 01
Obc in residue , A	3.JC	Drum press psig	72J	Cultur Diswide (CO2)		44.01
Gas temp lvg econimizer, F	4/6	Drum temp.(sat.) deg r	1070.00	Sulfur Dioxide (SU2)		20.01
Gas temp lvg air neater, F	4/6	S.H.outlet enthalpy, Btu/10	13/9.90	CTAND ALD COMPOSITION		20.01
Ambient Air Temp., F	60	F.W.Inlet enthalpy, Btu/Ib	300.90	STAND. AIR CUMPUSITION		00.00
Radiation loss, %	0.351	Rehtr. out enthalpy, Btu/1b	0.00	U2, % by volume		20.99
Sensible heat in residue, %	0.430	Rehtr. in. enthalpy, Btu/1b	0.00	N2, % by volume		79.01
Unaccounted for loss, %	0.545	Drum sat vapor enth.,Btu/1b	1200.20	H2O, % by weight		1.30
U.F.A. Steam Heater Rise, F	98	Drum sat liq. enth., Btu/lb	499.00	Molecular weight dry air		28.86
Reference Temperature	60					
				ADJUSTMENTS TO HHV FOR DIFFE	RING CON	DITIONS
MOLES/100 lbs FUEL actually bu	Irned			Sensible Heat in Fuel	Btu/lb=	: 0.0
adjustment for UBC as proporti	on of			Sensible Heat in Air	Btu/lb=	. 0.0
heat lost to unburned combusti	bles	***PARTIAL PRESSURES, PSIG	nt -	Compression Heat	Btu/lb=	- 7.3
				Steam Air Heater Input	Btu/lb=	86.3
C =	2.19372	P(CO2) =	1.364	Effective HHV	Btu/lb=	4892
H2 =	1.87124	P(H2O) =	2.318	Dry gas loss, %	=	12.8
S =	0.00336	P(\$02) =	0.002	Water from fuel loss,	% =	15.6
02 =	0.62148			Moist. in air loss, A	=	0.3
N2 =	0.01457	Percent by Volume (Orsat)		Total losses, %	=	31.7
H20 =	1.44284	% CO2 =	11.02	Actual Boiler Efficiency, %	=	68.3
C1 =	0.00587	% 02 =	8.71	Eq. EffAdjusted to As-fired	HHV	69.7%
		PPM SO2	169	****BOILER OUTPUT***		
THERO. 02 REO'D. MOL/100 #	FUEL			Feed Water Flow	=	158096
		FLUE GAS WEIGHTS, 1b gas	lb fuel	Blowdown flow, 1b/hr	=	3096
For: $C + 02 = C02$	2,19372	<pre>Lb. HCl/lb fuel =</pre>	0.002	High press, h/out-h/in, Btu/lb	=	1079
For: $2H2 + 02 = H20$	0.93562	lb. CO2/lb fuel =	0.965	Reheater : h/out-h/in. Btu/lb	=	0
For: $S + 02 = S02$	0.00336	lb. H20/lb fuel =	0.672	Blowdown : b/out-b/in, Btu/lb	=	198
For available 02 & Cl	-0.62735	lb. S02/lb fuel =	0.002	High press, duty, Rtu/hour	=	1.67240+08
Theor mole 02 to be supplied	2 50534	$\frac{1}{10} \frac{10000}{1000} =$	4 476	Repeater duty Btu/hour	=	0
meet mers of to be suppried	2.00004	Lb = 02/1b fuel =	0 555	Bloudoup duty Btu/hour	-	613 221
Hat Then Air # sir/# fuel	2 40092	Lb Dru flu and /t fuel burn	4 6 001	Total Pailor Output Rtu/bour	-	1 67860+08
Male dru bir (male 02 -	A 7CA17	Lb. Met flu gas/t fuel burn	4 6 672	lotal boller output, bturnour	-	1.0/000100
Malas Dru pir /lb fuel =	9.70917	Eluc ass malecular unight -	J 0.0/J 20.22			ATES
holes bry air /ib fuel =	5 02001	H20 is set # bu weight -	10.07	Fuel flev setenaters and dev	-	C02
LD. dry air req d/10 fuel -	J.02071	H20 In gas, & by weight -	10.07	Fuel heat issue Bau/ha	-	245625056
LD. M2U in air/iD fuel =	0.07378			Fuel flav anto lb/ba	-	243633036
CD. Sto. HIT TEQ. OVID TUEL =	5.90468	E-1- 0	40	Total air to bailand 16/6	-	200,208
		FO= 9	J4U	The set lessing bothers, 10/NY	-	270,404
ATTELUE UAS ANALTSISTAR		FC= 1	10	rive gas leaving boller system	-	333,030
moles HUI/ ID fuel =	0.00006	F0= 1	12	AIT leakage, LD/hr	=	7,125
Moles CO2/ 1b fuel =	0.02194	Lb-steam/Lb-fuel= 3	.09	Inermal DeNox Carrier Air	=	/,429
Moles H2O/ 1b fuel =	0.03729			undergrate air flow	=	188,880
Moles SO2/ 1b fuel =	0.00003			overfire air flow	=	93,030
Moles N2 / 1b fuel =	0.15975			Flue gas recirculation	=	33,505
Moles O2 / 1b fuel =	0.01735			Flue gas leaving economizer	=	368,556
Tot. Mols Flue gas/lb fuel =	0.23641			Total residue generation rate,	1b/hr	11,658

							-
PRESSURE IN	CREASE ACR	OSS FAN	15				
BAG HOUSE H	eat loss		0.5%				
DUCT DRECCU	PE*420		-0.00				
DI ANT ALTIT			0.00				
			3 15 G#/				
CONDEED ON	TICT TEMP		10.00				
Oursel Rese		-	203				
	COT HPPTOA	INI ET	01011				
		INLEI	UUILLI				
COPT T		20 50	27 20				
		07/00/	2(.2J				
1 5UKU	Mala-E)	0/00/20	0 10				
CP02 (BU	uniter)	10 02	0.10				
		10.03	7.70				
CPU2		7.03	/ . 2/				
	:- C	7.03	100				
HEAT TO OUD		261 60	933 Rtu/Lb				
	fuel	0 21	D(U/LU U00	Dalle Lash	AU C D-10-		
MOLES ADDED	/ I D EIIEI	0.31	0 0175	0 0040			
TOTAL MOLES	FILE CAC		0.0173	0.0097	0.0001		
DUENCHED CAS	C MOLE LIET	LD FUEL	0.2330	0.2037	20 2413		
ELLE CAS EL	DLI		27.JJ	DECEM	MOTOTIDE		
CONDER		205	110100	25059	101 JUKE		
RAGHOUSE		203	120203	65626	21.1/		
STACK D	ISCHARGE	296	120203	66626	20.7%		
ATR HTR	OUTI FT	476	125545	63678	15 4%		
STOICHIOMET	RIC RATIO	1 6	ACID GAS	1 4			
FMISSIONS	L R/MRTH	I B/HR-in	FEENCY	Lh/Hr-out	h/H-ront	am/sec	
S02	0.456	111.99	80.00%	22.40	174.16	2.82	
HCL	0.511	125.44	90.00%	12.54	171.20	1.58	
NOx	0.283	69.51	40.00%	41.71	36.01	5.26	
CO	0.126	30.94	0.00%	30.94	NA	3.90	
NMHC	0.005	1.23	0.00%	1.23	NA	0.15	
SLD PART	7.500	1842.26	99.85%	2.76	NA	0.35	
COND PAR	0.014	3.44	20.00%	2.75	NA	0.35	
TSP	7.514	1845.70	99.70%	5.51	NA	0.69	
DIOXIN	3.5e-09	8.6e-07	75.00%	2.1e-07	NA	2,7e-08	
METHOD 5 IN	gr/DSCF	3.38		0.010			
FRONT HALF	ONLY	3.37		0.005			
LIME-L	Lb/hr	345	ACTUAL	SO2 RATIO	2.29	MOLAR	
AMMON	IA-Lb/hr	36		SYSTEM I	ATER USAGE		
			(ClTwr Drif	1.13	GPM	
FRACTION FL'	Y ASH	10%		ClTwr Evap	204.92	GPM	
RESIDUE MOIS	STURE CONT	ENT	(ClTwr BloD	50.10	GPM	
BOTTOM ASI	Н	35%		ClTwr MkUp	256.15	GPM	
FLY ASH &	SCRUBBER	20%	E	Bir Lk&Los	4.65	GPM	
RESIDUE WEIG	GHTSWet	Basis	1	Bir BloDwn	6.19	GPM	
BOTTOM ASI	H-1b/hr	15023	E	Blr MakUp	10.85	GPM	
FLY ASH-11	b/hr	1457	1	Dry Scrub	31.56	GPM	
REACTED LI	IME-1b/hr	482	6	Ash Cndtn	11.38	GPM	
HYDRATED L	LIME-16/h	214					
			TOTAL PROD	CESS WATER	309.93	GPM	
TOTAL RESIL	DUE-16/br	17177					

TABLE 2 TYPICAL AIR POLLUTION CONTROL CALCULATIONS

TABLE	3 TYPICA	AL STACK I	EMISSION	IMPACT C	ALCULA	FION
STACK HEIGHT	ACK HEIGHT 250 FEET 76 METERS			ouyancy fi	224.60 m4/s3	
AMBIENT TEMP	60 520	F R				
STACK TEMP	296 756	F R				
STACK FLOW	488,612	ACFM	4 122,153			
	A	STAB B	ILITY CLAS C	SD		
CRIT WIND SPEED PLUME RISE TOT PLUME HEIGH SIGMA Z DISTANCE TO MAX PASCAL SIGMA Z sigma Z closure SIGMA Y 	2 498 575 406 0.989 406 100% 216 6.66e-07 2.66e-07	4 249 325 230 1.984 230 100% 297 4.27e-07 3.71e-07	5 199 276 195 3.517 195 100% 333 3.60e-07 3.60e-07	7 142 219 155 12.849 155 100% 679 1.59e-07 1.59e-07	m/s m m km m g/m3 g/m3	1
Cmax8hr Cmax24hr	1.33e-07 5.33e-08	1.92e-07 5.55e-08	2.16e-07 0.79e-07	1.59e-07 1.16e-07	g∕m3 g∕m3	
POLLUTANT S02 HC1 N0x C0 NMHC TSP D10XIN	EMISSION PER BOI 2.82 1.58 5.26 3.90 0.14 0.69 2.7e-08	I RATE LER 9/s 9/s 9/s 9/s 9/s 9/s 9/s	1hr 7.51 4.21 14.01 10.39 0.37 1.84 0.07	maximun 3h 4.19 2.35 7.81 5.79 0.21 1.03 0.04	n impact 8hr 2.44 1.36 4.54 3.37 0.12 0.60 0.02	24hr 1.31 ug/m3 0.73 ug/m3 2.44 ug/m3 1.81 ug/m3 0.06 ug/m3 0.32 ug/m3 0.01 ag/m3

annual average of 2000 TPD₇ through its four 600 TPD₇ rated boilers. The boilers are equipped with advanced air pollution control equipment (Specific non-catalytic reduction NO_x control and dry scrubber/baghouse).

Revenues

Typical waste-to-energy facility revenues include income from fees charged to dispose of solid waste and from the sale of recovered products. Tip fees are the monies charged to deliver waste at the facility. The tipping fee is the only variable within the control of the project sponsor. The range of acceptable values of the tipping fee, however, is constrained by a community's ability to pay and the price of competing disposal options.

Energy price is affected by siting constraints and the availability of long term commitments for steam or electricity purchases. Electrical sales usually promise to be the easiest method of utilizing the heat generated from incinerating MSW in a waste-to-energy facility

TABLE 4 TYPICAL CALCULATION OF STACK EMISSIONS OF TRACE ELEMENTS

						Normalized	d Emissi	on Rate	29.914	g/sec//lb/Mb
						Normalized	Annual	Impact	0.08	ug/m3//g/sec
						+Normalized	Hourly	Emis.	2.72	ug/m3//g/sec
						*Normalized	Daily	Impact	0.97	ug/m3//g/sec
						Normalized		mpact	1 52	ug/m3//g/sec
						Normalzd Q	uarterl	y impact	0.33	ug/m3//g/sec
										i
ELEMENT	1b/Mbtu	Fract.	Fract.	g/sec	ug/m3	I TLV	AAC	Saftey	Potency	1
		Emitted	Substnc			mg/m3	ug/m3	Factor	1 Slope	Risk I
	7 51	0.014	1 0- 051		E E1 - 07	0 500		20 221 24	0.01.00	1 0- 001
Arsenic	1 7.51	0.31%	1.06-02	6.836-061	3.310-07	0.500	1.14	20/21/9	3.210-03	1.80-091
	1			1	1 970-05	0.002	0.01	1013073	1	
Regullium	7.51	0.31%	1.0e-05	6.91e-061	5.53e-07	0.002	0.00	8264	1 11.04e-03	5.7e-10
oci yiii am	1	01010	1,00 001		3.28e-06	0.005*	0.03	10160		1
	i		i	i i	1.88e-05	0.000+	0,00	133	i	i
Cadmium	7.51	0.31%	6.5e-04	4.51e-04	3.61e-05	0.050	0.11	3166	1.42e-03	5.1e-08
	L		1	1	2.14e-04	0.040*	0.27	1246	1	1
	1		1	1	1.23e-03	0.200+	1.00	816	1	1
Chromium	7.51	0.31%	2.8e-05	1.93e-05	1.55e-06	0.500	1.14	738582	10.88e-02	1.4e-08
(hexavalent)	1		1	- I	0.92e-05	0.025#	0.17	18161	1	
			1	l	5.26e-05	0.050+	0.25	4757		1
Nickel	7.51	0.31%	6.4e-03	4.39e-03	3.51e-04	1.000	2.28	6498	12.46e-04	0.9e-07
7:		0.04**	2.4. 001	1 (2	2.09e-03	0.015#	0.10	48		
LINC	/.51	0.31%	2.40-03	1.626-03	7 71-04	1 2 500+	10.03	1/5/6		1
			100	100	4 420-02	1 15 0004	75 00	1,5009		
Uanadium	I I 751	0 31%	4 50-051	2 100-051	2 480-06	0 050	0 11	46059		C
V BITEGT CI	t / ioz	0.014	100 001	3.102 001	1.470-05	1 1.000*	6.67	453022		
	i		i	1	0.840-04	0.050+	0.25	2967		- i
Copper	7.51	0.31%	2.4e-041	1.68e-04	1.34e-05	0,200	0.46	33995	i i	i
	1			1	0.80e-04	1.000*	6,67	83593	i	i
Manganese	7.51	0.31%	1.5e-03	1.05e-03	0.84e-04	5.000	11.42	135542	İ.	i
Molybdemum	1 7.51	0.31%	0.7e-04	5.17e-05	4.14e-06	5.000	11.42	2757373	1	L.
Selenium	7.51	0.31%	1.1e-05	7.59e-06	6.07e-07	0.200	0.46	752011	0.88e-02	5.3e-09
	1		1	1	3.61e-06	0.200*	1.33	369831	1	1
Aluminum	7.51	0.31%	4.6e-02	3.20e-02	1.52e-02	2.500*	16.67	1096	I	1
Antimony	7.51	0.31%	0.7e-04	4.97e-051	3.98e-06	0.500	1.14	287027	I	1
			1	1	2.36e-05	0.500*	3.33	141157	1	1
Barium	7.51	0.31%	5.6e-04	3.89e-04	3.11e-05	0.500	1.14	36703	1	1
. .		0.004	1 0 00	0.00.041	1.85e-04	0.500*	3.33	18050		1
Browine	/.51	0.31%	1.20-04	0.830-041	6.620-06	0.327	0.75	112/08	1	1
Caloium	1 7 51	0 214	1 20-021	0 020-021	3.930-03	1 10.000	2.18	33428	1	
Furonium	7.51	0.31%	2 00-061	1 200-061	1 100-07	1 10.000	22.03	3446/	1	
Galliume	7.51	0.31%	1 50-041	1 03e-041	0.830-05	1			1	1
Magnesium	7.51	0.31%	1.90-041	1.31e-041	1.05e-05	2.500	5.71	544218	i	i
Phosphorus	7.51	0.31%	1.4e-03l	9.66e-041	0.77e-04	0.100	0.23	2954	1	i
1	1		1	1	4.59e-04	0.100*	0.67	1453	1	i
Potassium	7.51	0.31%	1.2e-03	8.28e-04	0.66e-04	2.500	5.71	86168	1	1
Silicon	7.51	0.31%	0.9e-01	6.21e-02	4.97e-03	10.000	22.83	4596	1	1
Sodium	7.51	0.31%	3.0e-03	2.07e-03	1.66e-04	5.000	11.42	68934		1
Strontium	7.51	0.31%	8.0e-04	5.52e-04	4.42e-05				1	1
Mercury	0.87e-05	100.00%	1.0e+00	2.59e-041	2.07e-05	0.050	0.11	5510		1
	1				1.23e-04	0.050*	0.33	2710		1
Anid Con	0 514	10 244	1 0-1001	1 50-1001	7.04e-04	0,100+	0.50	/10		
MC10 085	0.511	10.34%	1.06400	1.3601001	1.200-01	1 3,000	333.00	2034.49		
Criteria Pol	lutante		1	1		1 0	204		1	
Sulfur Diev	1 0.456	20.67%	1.0+001	2.82+001	2.260-01	1	80	355	1	
Seares DIGN		2010/8	1001001	110221001	1.34e+00	. *	365	272	i	ľ
	1		1	i	4.29e+00	i ŝ	1300	303	1	1
Nit. Diox	0.283	62.13%	1.0e+001	5.26e+001	4.21e-01	i	100	238	i i	i
Carbon Mono	0.126	103.47%	1.0e+001	3.90e+001	2.81e-01	i •	72	256	1	i
	1		I	I	3.12e-01	1	259	830	L	1
VOC	l 0.005	100.00%	1.0e+00	1.50e-01	1.20e-02	1			1	- T
Particulate	7.51	0.31%	1.0e+00	6.90e-01	5.52e-02	1	491	8895	I	1
Land		0 00**	C 7- 041	4 (5- 04)	1.88e+00	H *	36	19	1	1
read	7.51	0.31%	6./e-04	4.630-041	1.340-04	1 6	1.5	9769	I 	
Trace Organi	25		1	I		1			1	- 1
B(a)P	5.72e-08	100.00%	1.0e+001	1.71e-06	1.37e-07	1			2.46e-03	3.4e-101
PC8	6.71e-07	100.00%	1.0e+00	2.01e-05	1.61e-06	1			19.29e-04	1.5e-09
2378TCDDeq	6.54e-09	25.00%	100.0%	4.89e-08	3.91e-09	1	1.2e-05	3069	12.09e+00	0.8e-08
internat	1		1	ł		1			(12/87)	
	1		1			Combinded	risk du	e to Met	als	1.6e-07
	(1			ICombined r	isk due	to Orga	nics	1.0e-08
	1			I		potal Plan	IT KISK			1./e-U/

YEAR	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	
AVERAGE C/KW	3.96	4.21	4.47	4.83	4.88	5.17	5.54	5.61	5.95	6.32	
LONG/SHORT TO OUTAGE	0	0	0	1	0	0	0	1	0	0	
NET GENERATION	4.624	4.624	4 624	4.466	4.624	4.624	4.624	4.466	4.624	4.624	
TPY MOL	750 699	750 699	750 699	750 699	750 699	750 699	750 699	750 699	750 699	750 699	
TIP FFF &/T	46 09	48 40	50 82	53 36	56 02	58.83	61 77	64.86	68 10	71 50	
RYPASS IFTIP	2 22	2 40	2 56	2 74	2 92	4 12	4 22	4 55	4 79	5 02	
DIST	3.23	3.40	3.00	1	3,55	4.15	1.55	1.55	1.70	3.02	
	2 22	2 40	2 54	2 74	2 92	4 12	4 22	4 55	4 70	5 02	
	3.20	3.40	3.30	3./4	3.33	4,13	4.00	4.00	4.70	3.02	
0151	1	I	I	1	I	I	1	1			
REVENUES IN \$,000											
ENERGY	18298	19462	20681	21561	22572	23914	25611	25065	27521	29244	
CAPACITY	0	0	0	0	0	0	0	0	0	0	
TIPPING	34601	36331	38147	40055	42058	44160	46369	48687	51121	53677	
TOTAL REVENUES	52899	55793	58828	61616	64629	68074	71980	73752	78642	82921	
EXPENSES IN \$,000		100	-		_						
OPERATING LABOR	2932	3078	3232	3394	3563	3742	3929	4125	4331	4548	
MAINTAINCE LABOR	538	565	593	623	654	687	721	757	795	835	
MAINT, PART & SUPLY	1399	1846	3092	3519	4023	4224	4436	4657	4890	5135	
LIME	525	552	579	608	638	670	704	739	776	815	
AMMONIA	204	214	225	236	248	260	273	287	301	316	
BOILER CHEMICALS	157	164	173	181	190	200	210	220	231	243	
INSURANCE	853	896	940	987	1037	1089	1143	1200	1260	1323	
RAW WASTE HALLING	0000	0	0	0	0	0	0	0	0	0	
RAW WASTE TIP	0	Û	0	ů.	Ň	ů	ů N	0	ů.	ů	
OUTSIDE SERVICES	348	366	384	778	424	445	467	945	515	541	
OUT OF OTHER OF OFTE											
BID BUDGET	6956	7681	9219	10326	10778	11317	11882	12931	13100	13755	
MAINT. CONTRACTS	2698	3049	3298	3463	3636	3817	4008	4209	4419	4640	
RESIDUE HAULING	60	63	66	70	73	77	81	85	89	93	
RESIDUE TIP	706	741	778	817	858	901	946	993	1043	1095	
HATER	787	827	868	911	957	1005	1055	1108	1163	1221	
SEWER	94	99	104	109	114	120	126	132	139	146	
GAS	38	40	42	44	46	48	51	53	56	59	
Purchased Poher	0	0	0	0	0	0	0	0	0	0	
MOBILE EQUIPMENT	391	317	432	449	476	385	525	546	578	468	
SUBTOTAL	4775	5135	5587	5862	6160	6353	6791	7126	7487	7723	
FIXED FEE	970	1019	1069	1123	1179	0	0	0	0	0	
SUBSTATION-OGM	134	141	148	155	163	171	179	188	198	208	

TABLE 5 TYPICAL PROFORMA ACCRUAL STATEMENT

total annual ogm	14062	15313	17563	19148	20039	19677	20793	22328	22924	23918
*****	******	*******	********	******	*******	*******	*******	*******	********	******
GROSS REVENUE INTEREST EARNINGS DEBT SERVICE	38837 2905 -39000	40480 2905 -39000	41265 2905 -39000	42468 2905 -39000	44590 2905 -39000	48397 2905 -39000	51187 2905 -39000	51 425 2905 -39000	55718 2905 -39000	59003 2905 -39000
NET REVENUE	2742	4385	5170	6373	8495	12302	15092	15330	19623	22909
DEBT SERV COVERAGE	1.10	1.15	1.17	1.20	1.26	1.36	1.43	1.44	1.56	1.64

....

STANDBY CAPACITY

CAPITAL RESERVE

MAINTAINCE RESERVE

because of the Public Utilities Regulatory Power Act of 1978. Even with an attractive steam price, supply reliability or load following requirements may be too onerous; financing may be impaired due to usual steam buyer escape clauses.

Recycled material sales prices are affected by recovered material quality and the availability of long term materials sales contracts.

Expenses

Typical expense items include both direct and indirect costs of operation. When cash flow is considered from the private perspective, allowances for taxes and fees must be added.

Standby capacity and purchase power expenses include an allowance for back-up energy supplies when the in-plant turbines are off-line for repairs or maintenance. The amount of energy purchased increases during years when the turbine is brought off-line for major maintenance.

Labor is required for normal operation and maintenance of a facility. A plant's labor costs are generally unique and are determined by the facility's staffing plan, the prevailing wage rates, the fringe benefit packages, and local labor productivity.

Maintenance parts and supply costs cannot be reliably predicted for the refuse specific components of a facility. However, the balance of the plant can be reliably estimated using industrial power plant guidelines. Published information for waste-to-energy facilities is sparse and is frequently inconsistent owing to different cost accounting methods and being inherently site and facility specific. Estimates are proportional to tonnage processed.

Consumable expenses include auxiliary fuel, reagents for the air pollution control and water treatment systems, water, and internally used electricity. The quantity of consumables used is normally related to the amount of waste burned and its composition.

Electricity purchase costs can be related to the major energy consumption centers of the facility (boilers, fuel preparation, scrubbers, powerblock, etc.). This estimate is based on the equipment installed, what is operating, individual motor load factors, etc.

Water purchase cost is determined by the type and size of the facility. Water is used in the acid gas scrubber, cooling tower, boiler feed make-up water, and sanitary and housekeeping uses. Sewer cost is estimated accounting for winter losses in flue gas acid and ash streams.

Reagent is consumed in acid gas scrubbers and the amount used is determined by the amount of waste

burned, the sulfur and chlorine content of the waste, and the design parameters of the scrubbers, which includes the ratio of reagent to each unit of acid gas removed.

Boiler chemicals such as sulfuric acid, sodium hydroxide, sodium hypochlorite, hydrazine, etc. are usually consumed in small quantities. Their consumption is generally in direct proportion to boiler water consumption and can be estimated from boiler and water balances. For initial screening purposes, these costs are small enough to be taken as negligible.

Bypass and residue disposal expenses are determined by the amount of waste delivered to the facility that is not processed ("bypassed" to the landfill) and the cost of disposing the incinerator ash and air pollution control equipment residue. Disposal costs include both transportation and tipping fee. Because of the regulatory uncertainty concerning the proper management of ash, it is prudent to be able to separately estimate the cost of disposing ash, including air pollution control residues and bypassed waste. The tipping fees are location specific.

Substation leasing expense (if applicable) is determined by the energy contract with the purchasing utility and the scope of the supply negotiated with the local utility.

Insurance expense is determined by market quotes for the usual natural hazards, the business interruption, and the boiler and machinery insurance protection.

Maintenance and capital reserve expenses are needed to provide extra money to repair and upgrade the facility due to emergencies. Setting aside 1% of the energy revenues and 20% of the expected maintenance costs has been recommended by several underwriters.

Debt Service requirements are determined by the project's hard and soft costs, the reserve requirements, and bond market conditions. Table 6 shows an example of a bond build-up for a waste-to-energy facility. This example is based on an average interest rate of 9%, a 33 month construction period with a funded reserve of 3 months construction time for delays, and the indicated reserve, discount, and issuance costs. A uniform construction fund drawdown, land and owner's costs, reserves, and insurance during construction are based upon recent experience with financings of this size. Bond interest and monthly re-investment rates are highly speculative and any guess by other than a bond analyst would be inappropriate.

Proforma Balance Sheet Summary

When the preceding estimated expense elements are totaled, an annual operation and maintenance expense

TABLE 6 TYPICAL BOND BUILD-UP Period Mon Mult Rate Mo.Dev Per 24 32 0-6 0.585% 7.25% Mo const per 9.00% Long Bond Rate Mo demonstration 1 0.585% 7.25% 5.25% Fund Int Period 7-12 Mo Reserve 7.25% 3 13-18 0.585% 1.052 1+Bnd Rate 19-24 0.585% 7.25% 9.00% Const Loan Time to Com. Ops 57 MONTHS 15-30 0.585% 7.25% 0.720% Mon Spread Bonded Interest 60 MONTHS 7.25% 31-36 0.585% 30 Yr Term O Refin @ Const Start 0.585% Term 7.25% PRESENT VALUE VALUE OR PV MULTIPLIER ISSUE FUNDED INTEREST 0.2625 * BOND \$105,176 0.2154 DEBT SERVICE RESERVE 0.1000 * BOND 0.0705 \$40,067 DISCOUNT & ISSUANCE 0.0622 * BOND 0.0622 \$24,922 NET OF CONST. LOAN INTEREST EARNINGS (21,823) FINANCED COST WTE Facility \$199,481 } \$252,329 Landfill Facility \$9,000 } \$221,167 Const. Reserves \$20,848 \$21,359 **Const Services** \$10,424 \$6,256 Project Developmnt \$7,000 \$6.320 Renew, Replace, Imp. \$0 \$0 Site Acquisition \$1,575 \$1,361 Insurance \$4,000 \$4,143 -----------SUB-TOTAL \$252,329 \$261,207 \$400,670 Construction Loan ISSUE SIZE \$400,670 Principal \$233,329 \$39,000 ANNUAL DEBT SERVICE \$117,549 Interest ANNUAL INTEREST EARNINGS \$2,905

estimate will be obtained. By adding the interest earned on reserve accounts and by deducting the debt service payments from gross revenue, net facility revenue is determined.

Net revenues must be greater than zero in order to avoid increasing tipping fees. Otherwise, a community faces subsidizing the facility from general revenues and a private developer faces bankruptcy. For sound projects backed by substantial sponsors, an acceptable ratio of net revenue to net debt service ("coverage") is usually more than 1.2. During the early development stages of a project, when estimates are softest, a ratio of 1.5 or higher is prudent. Final coverage requirements must be provided by a financial advisor or underwriter since bond marketing requirements, govern project structure and security arrangements determine the requirement.

Summary Values

It is generally useful to summarize the available information by using key summary values. The MPCD computer model enables the rapid determination of the following typical:

(a) The maximum break-even tipping fee for the facility life expressed in current dollars.

(b) For a fixed tipping fee or formula, the number of years an outside subsidy will be required.

(c) The maximum fraction of available air pollution increment consumed.

- (d) The fraction of waste expected to be bypassed.
- (e) The tonnage or volumetric reduction achieved.

(f) The size of the required financing.

By focusing on a few key indicators, the comparative ranking of alternatives can be established and the impact of changes on the project definition becomes apparent to all interested parties. This is particularly important when project feasibility can be constrained by public concerns, low debt limits, state bond caps and very tight municipal budgets.

CONCLUSION

The PCD concept can be extended from its very simple beginnings and generalized assumptions with the inclusion of a constantly updated computer model of its contents. The strength of the MPCD is its ability to function from very early project stages and grow through plant operations. This centralized source of data and integrated computing provides the opportunity to quickly, and with full awareness of cascading impacts, evaluate alternatives and make decisions when events or options come before the project. In the past, similar situations would have required either lengthy and tedious calculations or management decision by intuition. These decisions can be made with much more confidence with an MPCD available.

REFERENCES

The American Society of Mechanical Engineers. "Steam Generating Units," PTC 4.1, 1964.

Combustion Engineering, Inc. Combustion Fossil Power Systems. 1981.

Golomb, D., Batterman, S., and Gruhl, J. "Air Quality Screening Model with Long-Term Averaging." *JAPCA* 33 (no. 3, March 1983).

Green, A. E. S., Singhal, R. P., and Venkateswar. "Analytic Extensions of the Gaussian Plume Model." *JAPCA* 30 (no. 7, July 1980): 773.

Rigo, H. G., and Davis, W. "Accommodating Uncertainty in Waste-to-Energy Plant Design." In *Proceedings of the National Waste Processing Conference*, Orlando, Florida, June 3-6, 1984.

Rigo, H. G. "Simulation as a Resource Recovery Plant Design Tool." In Proceedings of the National Waste Processing Conference, New York, May 2-5, 1982.

Rigo, H. G., Raschko, J., and Worster, S. "Consolidated Data Base for Waste-to-Energy Plant Emissions." In *Proceedings of the National Waste Processing Conference*, New York, May 2-5, 1982.

Rigo, H. G., and Markiewicz, A. "Consolidated Dioxin and Furan Data Base Expressed in 2, 3, 7, 8 TCDD Toxic Equivalents." International Municipal Waste Incineration Workshop, Montreal, Canada, October 1–2, 1987.

U.S. Environmental Protection Agency. "Health Assessment Document for Polychlorinated Dibenzo-*p*-Dioxins." EPA-600-8-84-014A, May, 1984.

Zerban, A., and Nye, E. Power Plants. International Textbook Company, May, 1984.