MANAGEMENT, OPERATION, AND MAINTENANCE SYSTEMS FOR WASTE FACILITIES

DONALD H. GRAHAM Operations Management International, Inc. A CH2M HILL Company Kingwood, Texas

ABSTRACT

This paper will discuss those capabilities which a qualified management, operations, and maintenance service contractor can bring to public or private waste conversion projects to assure their long-term technical and financial success. The discussion will focus on the management, operation, and maintenance systems necessary to support long-term facility operations, including management, staffing and training, quality assurance, budgeting/cost controls, and operations and maintenance management programs.

INTRODUCTION

Most public and private projects must stand on their own merits, and are often based upon local needs, alternatives, and/or economics. Figure 1 represents a list of the major project development considerations which must be addressed in developing a waste conversion project. The financial success of a project is a key element and hinges on a number of important factors. Therefore, with few exceptions, the financing of most projects is based upon:

(a) a long-term guaranteed or bonded fuel source (put or pay type contract)

(b) an established proven technology endorsed by a reputable engineering firm

(c) economics which are competitive to other longterm alternatives

- (d) shared risks
- (e) insurable risks
- (f) ability to finance
- (g) secured operational performance guarantees

Projects, both public and private, are typically developed by the owners through:

- (a) full service contractors
- (b) turnkey contractors
- (c) A/E firms

A typical waste project system design would consider all factors related to acceptable operations and maintenance practices, as well as all applicable regulations, laws, and permit requirements. A model of the overall system design criteria for a solid waste facility is presented in Fig. 2. Regardless of the approach, the design, financing, and construction activities take 2 to 5 years to develop and implement, followed by 10 to 30 years of continuing operations.

The ability to finance a project, based upon an acceptable technology, is highly dependent upon the qualifications, risks, and guarantees to be provided by the operator. Numerous concepts exist for operating contracts, both in contract term and compensation incentives. Typical operating contracts must consider:

- (a) engineering technology risks
- (b) financial requirements

Major Project Development Considerations

(c) uncontrollable circumstances

(d) contractual terms and reopeners for fee and risk reassessments

(e) turnkey construction contractor's acceptance obligation

(f) insurance risks and costs

Depending upon the project structure, the interaction and clear separation of these long-term risks is often a difficult contractual task, unless a full service contractor provides all services and guarantees, rather than subcontracting a portion, e.g., the long-term operations.

A major factor receiving considerable scrutiny, particularly when projects require long-range financing, is "Who will operate these highly sophisticated systems?" Investors sinking tremendous capital outlays into such a project must be assured that operations will not create greater risks than financial returns. Therefore, our presentation today focuses on those areas of concern beyond the above considerations, critical to selecting a service contractor to manage, operate, and maintain facilities after they are built. This industry's graveyard is full of projects which have failed simply due to poor management, operations, and maintenance. Incineration, energy production and resource recovery projects have become complex and highly regulated businesses. With technology still developing in the U.S., few firms have built operations and maintenance staffs capable of handling these complexities and associated risks. However, without a successful operations and management firm, the project is doomed to failure or, at best, facing financial chaos.

Significant issues which are of concern to management, operations, and maintenance subcontracting firm are:

(a) obligations, liabilities, securities, and term of service provided by the engineer and/or turnkey contractor, including, but not limited to, warranties, longterm latent defects, acceptance testing protocol and its duration

(b) waste supply, seasonal quantity variances, quality test protocol, and the interactions with project revenues and operator incentives

(c) risk allocation and sharing arrangements between all parties to the project

(d) clear cut provisions for establishing, defining, and managing the Nonroutine Equipment Maintenance Reserve Fund

(e) Force Majeure or uncontrollable circumstance provisions

(f) provisions to compensate for the costs incurred for failure of the facility to perform in accordance with original design specifications

(g) higher than anticipated operations and main-

FIG. 2 OVERALL SYSTEM DESIGN

tenance costs due to maintenance, labor, service, taxes, insurance, et al., not attributable to operator's negligence

(h) committed residue disposal sites for life of project

Project risks can be assessed, identified, contractually shared, and in certain instances insured against. Operations risks which are often partially insurable are:

(a) Operating Contract Performance Bond protects

owner or client against operator's contractual nonperformance or default. The policies are typically for the term of the agreement, in an amount equal to the annual contract fee.

(b) Boiler and Machinery insurance can be purchased to protect the owner/operator against catastrophic failures of the mechanical devices. These policies often have significant deductibles to exclude routine maintenance and repair claims.

(c) Business Interruption insurance is available, sub-

ject to a deductible period, to protect the owner, operator, and bond holders against significant losses in revenue, debt payment, fixed operations and maintenance costs, etc.

(d) System Performance insurance is often touted as protection offered the owner to safeguard against technology and performance failures in the early years. The insurance is expensive and fraught with implementation difficulties. Very few projects to date have actually chosen to adopt this coverage.

Now that we have prefaced the intent of this presentation with the major contractual concerns, project risks, and alternatives, we'll focus on the features you might consider when selecting a service contractor for short- or long-term management/operations/maintenance services. The price of the service contract will be impacted significantly by the contract period, escalators, contract term reopener conditions, termination options, and other imposed risks, often to be offset with performance incentives.

Service contractors are typically evaluated on their management, operations, and maintenance skills, in addition to their geographical presence and financial strengths. The remainder of this presentation will focus on those important capabilities which reputable service contractors can bring to a short- or long-term, smallor large-scale public or private project.

TYPICAL SERVICE SCOPE

Regardless of the type of facility, management, operations, and maintenance are services provided by firms with appropriate resources, experience, talents, and the right tools. A typical scope of service which a management, operations, and maintenance firm may use should include the following services:

(a) provision for all guaranteed costs for personnel, salaries, wages, and benefits to operate the facility properly 24 hr/day, or as required, including administration, supervision, and corporate support.

(b) procurement and payment of all costs including supplies, chemicals, utilities, and spare parts

(c) an operations plan with appropriate shift scheduling and reserve personnel assignment to minimize scheduled overtime

(d) all repairs, including preventive, corrective, and nonroutine maintenance

(e) a computerized maintenance management program

(f) cost accounting and a record keeping system to provide timely, accurate financial and budgeting data

(g) traffic control plan to monitor and record fuel receipts, ash, energy, and other commodity deliveries

(h) training program to enhance and develop employee skills, including employee evaluation and development programs

(i) a safety program, including an emergency response action plan

(j) a pollution control monitoring system to maintain air, wastewater, and noise control standards

(k) a quality assurance program with the appropriate checks and balances

(1) a disposal plan for residue and other waste materials

(m) regulatory agency interface

Next, we'll focus on the key features, skills, and management tools available from reputable service contractors, with special emphasis on the management, operation, and maintenance management aspects.

MANAGEMENT

Management, an encompassing word, is defined for the purposes of this paper to include:

- (a) corporate support (administrative and technical)
- (b) budgeting and cost controls
- (c) project staffing
- (d) training
- (e) safety
- (f) quality assurance
- (g) communications

Corporate Support

It is imperative that the Service Contractor have a corporate staff of administrative and technical specialists to assist the project staff during start up with staffing, employee benefits, payroll, special procurements, insurance, technical issues, training, safety, and quality assurance programs.

Budgeting/Cost Controls

A few of the more important fiscal management tools are best illustrated by the following form samples:

- (a) labor estimating program (Fig. 3)
- (b) operations and maintenance budget (Fig. 4)
 - (c) annual budget (Fig. 5)

These reports will assist the facility operator in subsequent proposal efforts, annual budget planning, continuous cost monitoring and budget adjustments, in addition to development of a historic profile of the facilities operations and maintenance cost activities.

Project Staffing

Because the key to quality operations and management is quality people, proper staffing of a facility is synonymous with successful operations and management. Therefore, although corporate management is important in overall policy and finance decisions, the major player is the onsite Project Manager. The Project Manager's role in a new facility requires an in-depth knowledge of operations and maintenance of all system components as well as advanced people skills to deal with staff, owner, regulatory agencies, and the public. Ideally, the Project Manager should have the following minimum qualifications:

(a) 10 years of operations and maintenance with solid fueled boiler and turbine power generation systems, including 5 years of supervisory management

(b) certification as a stationary engineer and/or boiler operator

(c) demonstrated technical capabilities and knowledge

(d) strong oral and written communications capabilities

(e) extensive management and peoples skills

(f) training and safety expertise

(g) public relations experience

Project management takes a mature, dedicated, and highly motivated individual, a self-starter with a thorough understanding of the technology and how to motivate people to get the job accomplished in an efficient cost-effective manner.

The Project Manager will usually recruit his staff from local resources, with the possible exception of his operations and maintenance supervisory level positions. These positions require experience and background often not available in the local marketplace. A good operations management firm will be able to provide this expertise through their own key personnel or will have ready access to a number of potential qualified candidates.

The Organization Operations Diagram (Fig. 6) indicates the job classifications and staffing for a fourshift, 24 hr/day operating facility. The number of personnel and positions will vary with project size and complexities.

Recruiting and retaining a good staff is accomplished through proper evaluation of skills and experience, a sound employee orientation and fringe benefits program, incentives, such as bonuses or special recognition for exceptional performance, and adequate and well planned training programs. Treating employees like professionals and establishing a team effort creates a responsive, productive, and promotable staff. Staffing may also require a reserve personnel labor pool, which is often personnel in training, who are used to reduce scheduled shift change overtime, in addition to vacation and sick leave relief. These are generally temporary or part-time employees.

Training

Training is an important element in retaining and developing staff. Operations and management firms must be able to provide the Project Manager with training materials and, if needed, special instructors for specific subjects.

Both onsite and formal classroom programs are combined to enhance operator skills and keep employees up-to-date on the latest techniques in operating and maintaining their facilities. The following summary covers typical training program requirements for a new project:

TRAINING	REQUIREMENTS SUMMARY
Type of Training	Purpose
Orientation	Public relations and public information
Orientation	Employee orientation
Occupational Safety and Health Act (OSHA)	Employee safety orientation and education
Management Development	Supervisory development training for shift foreman and managers
Systems Operation	Train operators in the details of the process and system theory, e.g., water chemistry, SOPs, emergency conditions, etc.
Equipment	Train plant maintenance personnel in the check-out and repair of process equipment in accordance with the master preventive maintenance schedule and plan
Refresher Courses/Updates	Reacquaint all plant personnel with the SOP's in their functional work areas
CPR/Multi-Media	First aid - Red Cross or Heart Association certification

Safety

Safety must be one of the primary concerns in the operation and maintenance of all facilities. For instance, safety sessions rely heavily on employee input to identify and correct safety deficiencies; accident reports and debriefing procedures are used in investigating and evaluating past accidents. Involving employees in the design and implementation of safety programs makes safety a team effort and each employee's responsibility.

Emergency response is another key aspect of a safety program. Should any emergency or malfunction occur which threatens to overtax the onsite project staff,

	and and a		1	-Insura	Ince	- I Unen	p I		400	-1	Total C		
TITLE M/S RATE & GROU	P SAL.	FICA	NEDICAL	LIFE	AD+D	STATE	FED	MORK COMP.	PENSION	TOT FRINGE	-10tal 6 (Sa), +F	ringe	
SALARIED (1=Single)													
	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1	\$0 1	
	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1	\$0 I	
	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1	\$0 1	
	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1	\$0 i	
	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1	\$0 I	
****HOURLY****											1	1	
	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1	\$0 1	
	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1	\$0 1	
	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1.1	\$0	
	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1	\$0 I	
	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1	\$0 I	
	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1	\$0 I	
	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1	\$0	
	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1	\$0 I	
	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1	\$0 1	
	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1	\$0	
	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1	\$0	
	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	i	\$0 1	
	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1000	\$0	
	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	1	\$0	
Total Jobs 0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	nieral	\$0	
Bonuses		1.11							1000	TOTAL BONLA	5	\$0	
Sched Overtime 0.0%	\$0	\$0						\$0	\$0	TOTAL O.	г.	\$0	
Pers. Reserve 0.0%	\$0	\$0						\$0		TOTAL RE	sv	\$0	
											-	a second s	

FRINGES

PERCENT FRINGES =

0.00% TOTAL LABOR PLUS D.T. & RESERVES \$0

		MULTIPLIER TABLE		
ı	FICA	PERCENT	7.05	1
I		LIMIT	\$39,600	I
		MAX	\$2,792	ł
	NED	ANDUNT/FAN	\$1,686	L
		AMOUNT/SING	\$553	ł
		DENTAL	\$330	1
	LIFE	ANDUNT/H	0.20	I
	AD+D	ANDUNT/H	0.06	1
	STATE UNERP	PERCENT	0.00	1
		LIMIT	\$0	١
		MAX	\$0	I
	FED UNEMP	ANDUNT	\$56	I.
	WORK COMP	PERCENT	0.00	1
	PENSION	PERCENT	.00	1

FIG. 3 LABOR ESTIMATING PROGRAM

CONTRACT TITLE PROJ	ECT NAME		
TASK 0001 OTHER		* Labor Narkup	01
5130-41 AUTO RENTALS	\$0	× OTHER MARKUP	01
5130-65 MOVING & RELOCATION	\$0	* PROFIT	01
5130-66 AIR TRAVEL	\$0	BONUS ANT/ENP	\$0
5130-67 ALTO WILLEAGE	\$0	STANDBY HRS/ND	0
5130-68 MEALS & LODGING	\$0	AVS FLOW (NGD)	0.00
5130-69 ENTERTAINMENT	\$0		
5140-20 ADVERTISING	SO CONT	RACT ANT=	\$0
5140-60 VENTCLE EXPENSE	\$0 DVER	QUI X NORGINE	0.0
5140-61 LEOSED OUTOS	\$0		
5140-70 TELEDHOME & TELEGROOM	\$0		
5140-71 DOSTORE & EREIGHT	\$0		
5140-72 DEETCE DENT	\$0		
5140-72 EDUTONENT PENTOL - INT	60		
5140-74 ODEBATINE CHORITE	60		
	*0		
5140-75 UTHER UTILITIES	50		
JI40-77 ENUIPHENT REATHL - DUT	90		
5140-78 HISLELDHEULS	\$0		
5140-60 IUULS	90		
5140-61 CHEMICHES	\$0		
5140-82 TAXES & LICENSES	\$0		
5140-90 UNIFURMS EXPENSE	\$0		
5140-91 MAINTEARALE SUPPLIES	\$0		
5140-92 LABORATORY SUPPLIES	\$0		
5140-93 FUEL OIL	\$0		
5140-94 SAFETY SUPPLIES	\$0		
5150-87 OUTSIDE SERVICES	\$0		
5150-88 CONSULTANTS	\$0		
5150-89 CONTRACT HAULING	\$0		
5210-21 DUES & MEMBERSHIPS	\$0		
5210-22 BOOKS & PUBLICATIONS	\$0		
5210-23 TRAINING & TUITION	\$0		
5210-24 MEETINGS & CONVENTIONS	\$0		
5230-31 INSURANCE EXPENSE	\$0		
5230-31 PERFORMANCE BOND	\$0		
5240-76 NATURAL GAS	\$0		
5240-77 ELECTRICITY	\$0		
5240-78 WATER	\$0		
TASK 0003 REPAIRS			
5140-77 EQUIPMENT RENTAL - DUT	\$0		
5140-79 REPAIR PARTS	\$0		
5140-91 NAINTENANCE SUPPLIES	\$0		
5150-87 OUTSIDE SERVICES	60		
TASK 0009 SOLIDS DISPOSOL	**		
5140-60 VEHICLE EXDENSE	60		
5140-74 OPERATING SIDDI TES	60		
5140-77 FOILTONENT PENTOL _ OUT	60		
5140-79 REDOLD DOUTE	80		
5140-13 REPHIR PHILS	90		
	50		
SIEV 23 FUEL UIL	50		
SISO OD CONTRACT HALF THE	\$0		
DIDU-GA COMINALI MANTINP	\$0		
TUTAL	\$0		

FIG. 4 OPERATIONS AND MAINTENANCE BUDGET

additional backup resources must be provided, often from corporate support.

Quality Assurance

In addition to staffing the facility with highly skilled, motivated people, operations and management should start with a quality assurance program covering all aspects of the process, i.e., operations, maintenance, laboratory services and cost control. One of the most valuable assets a good operations and management firm can bring to facilities are those previously proven techniques and process control technologies which will ensure optimal long-term operations and maintenance at the lowest possible cost. Setting high standards of quality control in all areas is one of the first steps towards ensuring a facility is operated properly, maintained effectively, and kept within budget. Coupled with a good solid team of operations and management specialists, quality assurance programs put in place during start up will serve to monitor, analyze, validate, track, and report on the whole system. Computerization has made these tasks much easier. The larger operations and management firms have automated operations and management programs designed with enough latitude to cover the major areas of facility operations, maintenance, laboratory, cost control, and productivity.

The heartbeat of any modern facility is in the computerized control center. The Project Manager will spend much of his time in this center monitoring the various stages of the operation through use of the computer controlled instrumentation and data readouts being fed into the main terminal logs, as well as reviewing reports from various operations such as the traffic coordinator's station.

Communications

0%

0% 0%

Keeping the owner and corporate management abreast of important activities at his facility is not the only necessary communications link. State and local regulatory agencies take a keen interest in all facilities which could adversely impact the environment. Maintaining a good relationship with these agencies by compliance with regulatory permit requirements and submittal of the proper supporting documentation secures their confidence in the operations and maintenance firm's ability to stay within the permit parameters.

Reports covering air emissions, wastewater effluent quality, residue ash analysis, and any other regulatory requirements should be an integral part of the services provided by the operations and maintenance firm.

OPERATIONS

The term operations pertains to the integral system and process unit operations as they relate to system availability, reliability, and productivity. Operations

PROJECT NAME	A	NNUAL BUD	TET											
26-0ct-85	HO.1	NO. 2	HD. 3	MD. 4	NO. 5	MD. 6	MO. 7	MD. 8	10.9	MD. 10	MO. 11	MO. 12	TOTALS	
DIR SAL	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
PERS RESV	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
OVERTINE	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
BONUSES	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
BENEFITS	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
Sub-total	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
AUTO RENTAL	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
MOVING & RELO	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	50	
AIR TRAVEL	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
AUTO MILEAGE	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
MEALS & LDG	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
ENTERTAINMENT	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
ADVERTISING	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
VEHICLE EXP	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
LEASED AUTOS	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
TELEPHONE	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
POSTAGE & FRT	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
OFFICE RENT	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
EQ RENT IN	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
OPS SUPPLIES	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
OTHER UTIL	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
EQ RENT OUT	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
MISCELLANEOUS	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
TOOLS	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
CHENICALS	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
TAX & LICENSE	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
UNIFORMS EXP	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
NTC SUPPLIES	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
LAB SUPPLIES	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
FUEL OIL	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
SAFETY SUPL	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
OUT SVCS	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
CONSULTANTS	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
CONTRACT HAUL	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
DUES & MENOR	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
BOOKS & PUBS	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
TRNG & TUIT	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
NTGS & CONV	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
INSURANCE	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
PERF. BOND	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
NATURAL GAS	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0 0	\$0	\$0	\$0	
ELECTRICITY	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
WATER	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
0003 REPAIRS											11.2		11 0019 501105 11	
EQ RENT OUT	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
REPAIR PARTS	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
HIC SUPPLIES	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
UUT SVCS	\$0	\$0	\$0	\$0	\$0	\$0	\$0 .	\$0	\$0	\$0	\$0	\$0	\$0	
0009 SULIDS L	ISPUSAL	Pd th			SOIL	puq				9			1. 12.000 BO 1	
VEHICLE EXP	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0 BA S	
UPS SUPPLIES	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	8 q m \$0	
EUPI KENI-UUI	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
REPHIK PHKIS	\$0	50	\$0	\$0	\$0	\$0	\$0	\$0	\$0	50	50	50	50	
CHEMICHES	\$0	50	50	\$0	\$0	50	50	50	50	50	50	50	Ue	
OUT CUCC.TID	90	50	50	50	50	50	50	50	50	90	90	90	90 #0	
CONTROCT HOLE	50	50	90	50	50	50	50	50	90	90	90	90	9U #0	
TOTOL	90	90	90	90	90	90	90	90	#0	00	60	50	60	
	90	90	50	90	90	90	\$U #0	\$0 \$0	#0	40 40	\$0		60	
	50	9U #0	40	\$U #0	\$U \$0	00	60	60	¢0	\$0	\$0	\$U	\$0	
DONET	\$0	\$U \$0	60	60	60	60	60	\$0	\$0	\$0	\$0	\$0	50	
TOTOLS	\$0	60	\$0	\$0	¢0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
X NORGIN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Ú.O	0.0	0.0	0.0	
- I B. 11 P F 1 P	0.0	V. V	0.0	3. V	V. V	0.0	010	21 V						

restave large in edit of anished another too to FIG. 5 ANNUAL BUDGET material of states well as another too find assore that a selfing video drive vision and protect of notifice of another of our states and the states of the s

FIG. 6 ORGANIZATION-OPERATIONS DIAGRAM

are critically dependent upon the support of maintenance, to be discussed next as a separate but vital function. The combined operations and maintenance *team effort* is essential to maximize revenue production, the ultimate key to the project's success and the survival of the service contractor.

Operations are typically on a scheduled rotating shift basis. The shift foreman or supervisor usually assumes the facility management responsibilities for the period, with support from the project manager as required. During off shifts and weekends, they are supported by on-call maintenance staff for emergency repairs.

Operations are guided by extensive in-depth formal procedures, troubleshooting guides, records, and data logs, all of which are continually reviewed and upgraded to enhance the system reliability and efficiency as well as revenue production. These records and daily summary reports provide valuable information to management and the owner, and can highlight areas of pending difficulties.

Typical specimen logs used to monitor the various systems include:

(a) Boiler Process Log (Table 1)

(b) Turbine/Generator Log (Table 2)

(c) Daily Project Activities Summary Report (Table 3)

Logs and reports may be developed to fulfill the complexity of the system and contractual requirements. These reports are not only used to technically monitor the system, they are also used to determine

TABLE 1 BOILER PROCESS LOG

BOILER PROCESS LOG

Date _____, 19

fm2.85.008 (Remarks on Back)

TABLE 2 TURBINE/GENERATOR LOG

TURBINE/GENERATOR LOG

Date _____

, 19____

and the second second second second second second	0000	0200	0400	0600	0800	1000	1200	11400	1900	1900	2000	12200	12400
Steam to Tur./Gen. (psi)													
Steam Temp. (°F)				Inte		(avi)	-	0.1			10.00	1.144	1.000
Condenser Water Temp. F/W	1	/	/	/	/	/	/	/	/	/	/	/	
Exciter (D.C. amps)	188	1.2.4	223				1000					owne	
Exciter (D.C. volts)	fead	0.80		the	expe	ted.)	10 8	1990.20	1		0	c cur	apa
Exciter Temp. (°C)					1998.02			de su la					
Turbine rpm	trol	node						51		1			
Turb./Gen. Oil Pres. to Bearings (psi)	1300	1.5.2	0.00.00			10	1						
Turb./Gen. Oil Pump Discharge (psi)	la s				2.2.2		5 2						
Oil Cooler Temp. (in/out, °F)	1.84	1916	666	1. 12. 5	of St. 1								
Fwd. Trb. Br. Flw/Oil Temp. (°F)	1	/	/	/	/	/	1	/	/	/	/	/	1
Aft. Trb. Br. Flw/Oil Temp. (°F)	1/	/	/	/	/	/	/	/	1/	/	/	/	1
Gen. Br. Flw/Oil Temp. (°F)	1/	/	1	/	/	/	1	/	1	/	/	/	/
Exct. Br. Flw/Oil Temp. (°F)	1	/	/	/	/	/	1	/	1	/	/	/	1
Gland Seal Steam (psi)							Í				-		
Cond. Vacc. (in H ₂ O)	101	1020			MC D		1010	14	125.11	1			
Trb. 2rd Stg. Extrac. Stm. (psi)		1.1.2	193		1 1.13	2.8.5				100			
Trb. 3rd Stg. Extrac. Stm. (psi)				light	sed a	or the	1	10.1	dup	ohi	A 2		610
Gen. Air Box Temp (°F)	10.00	- <u>M</u> 24	i bi bi	STOCK	1220.14		1	11	1997	1	ante.	Destr	9
Air Box Water Temp. (in/out, °F)	1/	/		/	/	/	1/	/	1/	/	/	/	/
Condenser Water Temp. (in/out, °F)	1/	/	1	/	/	/	1	/	1	/	/	/	1
Ejector Steam (psi)	1			1010			1.000			-			
Generator A.C. kilovolts	1	-55	133			333			18.50	- ep	rt is	thet	ath
Fl Pwr. A.C. kilovolts	1 Carrie	100	1.4.0	199	100.0		are	10		plee	fue a	(e. 11)	1600
Fl Pwr. A.C. amps			1	180	185	1							
Generator A.C. amps		100				101.000				21			
Generator A.C. megawatts	198	1.2.5	183		2.5	3 8.8	For	Beni	he h	- kiti	ity d		-
Generator kilowatts				1040		10.00	cesp	1			1001		
Fl Pwr. kilowatts	186	pre		-	1.1.1			100					
24 hr. Gen. kilowatts (gross)				cad		and a	1			as break			-
24 hr. Fl Pwr. kilowatts (net sales)	1												

TABLE 3 DAILY PROJECT ACTIVITIES SUMMARY REPORT

CAEI															
NOVENBER		ACC RUED	ACCRUED	CALCULATED	AVERAGE DAILY	ACCRUED	ACCRUED	PIVERAGE	ROCRUED	ROCRUED					
DATE		BM to FD	BM to FPC	DAILY	GENERATION	STAT 10NS	STATION	STATION	FPC to BM	FPC to BM D	URDHORN.	SVSTEM		SINGACO ************	************
2480 hr	ų.	NETER	POMER-NET	NET SALES	RATE (net)	METER	FOLER	LOAD	METER	NET P	ONE R- Kwh	GENERRY I ON	1 R	LIMITING	EQUIP W/MECH
EADING)	LOADS TC	INS READING	M/R × 700	(HNN)	(1641)	READING	MR x 2488	(HMM)	READING	MR x 789	(MID)	(Daily-hrsl	×	PROD. FACTOR	DEFICIENCIES
0		33689. 0	8 27782300	27782300	1157.60	1412.00	3388889	141200	293. 80	2013200		6.50			
-	6 144	9.42765 84.	3 27841890	535,00	2.48	1413.80	3391200	1 60	301.00	210700	1400	7.00		STARTUP 0720	N/A
2	11 205	33346.8	0 27362200	120400	5.02	1418.00	34 03200	Sene	305. 60	213500	2800	24.00		NET FUEL	N/A
3	1 21	.58 40104.0	8 28072898	119600	4.61	1424.00	3417699	669	305. 86	213580	8	24.00		NET FIJEL	N/A
4	10 220	.30 40265.8	8 28185586	112789	4.78	1431.00	34344840	700	385. 89	2135,00		24.00		NET FIEL	N/A
5	14 326	1.70 40446.0	8 28312280	126700	5.28	1437.00	3448899	6009	385. 69	213586	0	24.00		RUJUST TO COLD WEATHER	N/A
9	21 443		0 28465580	153380	6.33	1444.08	3465690	2008	385.00	213500	8	24.00		ROJUST TO COLD MERTIER	N/A
2	17 372	. 48 46838. 8	9 28623000	157500	6.56	1458.60	348000	699	385. PB	213500		24.00		FUEL QUONTITY	N/P
8	13 263	. 00 41122.0	a 28785466	162400	6.77	1457.00	34 36800	299	385. 66	213500		24.00		FUEL QUOLITY	N/A
6	6 118	. 50 41339. 6	9 28337366	151 366	6.33	1463.80	3511200	649	305.00	213500		24.00		FUEL QUELITY	N/A
10	8		9 23087100	143869	6.24	1478.08	3528899	7008	385. 60	213500	•	24.08		SCREEN & CONVEYOR	SCREEN & CMVYR
11	11 234	. 30 41766.0	9 23636200	143160	6.21	1477.00	3544800	200	305.00	213500		24.00		FUEL QUELTY	N/N
12	13 284	. 98 41386.8	9933992669	154868	6.42	1483.98	3553266	648	305.00	213500	8	24.00		FUEL QUALITY	N/A
13	13 294	. 30 42210.0	9 23547660	156800	6.53	1499.00	3576800	700	305.00	213500		24.00		FUEL QUALITY	N/A
14	17 364	. 30 42440.0	0008042	161000	6.71	1497.08	3592899	70-0	305.00	213500		24.80		MOISTURE CONTENT	N/A
15	12 248	. 30 42675.0	238725.40	164500	6.85	1504.00	3603600	200	385. 60	213500	•	24.00		FUEL QUALITY	N/A
16	9 11 9	. 98 42833. 8	9 29383186	110600	4.61	1511.00	3626489	700	305. 00	213589	8	24.00		LON FUEL INVEN.	N/P
12	1 28	. 78 42347.0	30962300	13866	3.33	1517.00	3640000	690	305. 00	213588	0	24.00		LOW FUEL INVENTORY	N/A
18	6 133	. 60 43962. 8	30143490	84540	3.35	1523.00	3655299	699	305. 60	213500	•	24.00		LOW FLEL INVENTORY	N/N
19	5 164	.10 43214.0	36243869	106400	4.43	1529.00	36636 60	600	385. 99	213580	0	24.00		LOW FUEL INVENTORY	N/A
50	21 404	. 78 43466.6	30386000	130,200	5.43	1534.00	3681688	SPR	385.00	213599		24.00		LOW FUEL INVENTORY	N/A
21	13 257	. 00 43460.0	30452000	42999	1.75	1541. 20	3698460	700	312. 00	216400	4366	13.86 4	6/47	AIR CONTRESSOR/STOPH	AIR CONDRESSOR
22	4 85	. 50 43592.0	30514400	32400	3.85	1546.00	3710400	560	313. 90	219100	79.0	23.50	48	STORM AND FL. POWER SURGE	N/A
23	3 71	.80 43632.0	30584466	20000	2.32	1552.00	3724860	646	314.00	213860	700	21.50	49	EXHAUSTED FUEL SUPPLY	N/A
24	8	. PO 43632. P	30584400	6	0.00	1557.00	3736809	500	315.00	222500	79.0	0.00		EXHRUSTED FUEL SUDFLY	N/P
83	4 73	.20 43692.0	39584468	0	6. 60	1558.00	3733200	100	319.00	223300	2899	0.00		EXHOUSTED FUEL SUFPLY	N/A
26	12 267	. 10 43632. 0	30584400	8	0. 60	1559. 60	3741600	100	321.00	224700	1400	6.90		EXHPLISTED FLIEL SUDDLY	N/R
52	12 248	. 20 43632. 8	3 325844 60	8	6.66	1568.00	3744000	100	324. P.P	226800	2100	R. RR		EXHOUSTED FUEL SUPPLY	N/D
28	3 71	.38 43777.84	36643300	53560	2.48	1564.00	3753600	400	326. P0	228220	1400	16. 20		START LE AT BERR	N/M
8	3 67	.30 43387.8	30738390	147090	6.13	1571.00	3770400	700	326. 82	228.209	8	24.00		LOW FUEL SLEP. (CONSRV)	B/N
30	5 123	.33 44133.0	3 39833100	182200	• 4.26	1577.08	3784200	609	328.00	26.3600	1400	24.00		LOW FLEL SUPP. (DONSRV)	N/P
31			G	¢.	0.00		69	8		8	•				
TOTALS	266 5633	. 61		3110800	4.20		1		3	1	20300	595. PO	17		

costs and revenues, and provide timely management and owner information.

In addition to computerized reports and logs, scheduled periodic reports should be generated to keep the owner and other project participants up-to-date. Such items as preventive maintenance and equipment repair status; scheduled outages or unscheduled down time at the facility; incidents which may have affected operations, safety, and perhaps costs; training meetings and safety inspections; general overview of the operations, as well as financial, budgetary, and cost variance should be reported periodically.

Most service contractors guarantee that effluent discharged from or products produced by the owner's waste treatment facility will meet all specifications of the plant's permits or agreements. While most experts agree that waste treatment and power generating plants can be operated in a number of different control modes so that effluent and air quality meet permit specifications, there are very few modes which can be termed "optimal." Wherever practical and feasible, process modifications (always with an eye toward operating economies and maximum revenues) are made at the owner's facility to produce the "optimal" control mode.

A plan for these modifications is written down and all personnel are instructed as to their particular roles in the implementation of this plan of action. Emergency procedures and safety techniques are included in each plan of action. This written plan of action ensures that the least costly method of operation will continue.

MAINTENANCE MANAGEMENT

A good maintenance program protects the large capital investment the owner has made in facilities and equipment. The service contractor must have the maintenance systems and experience to provide proper care for the facilities and equipment. In addition, maintenance specialists should have experience in the crucial start-up period where equipment failure rates can be high and rapid response is necessary.

Most reputable service contractors will implement a computerized maintenance system to provide all routine maintenance and to schedule and monitor preventive, remedial, and emergency maintenance as needed. The system should monitor, in detail, all those activities which reduce failures and extend the service lives of the facility and equipment. These activities include periodic lubrication, adjustments, visual inspections, and scheduled overhauls. The system should schedule each task and keep maintenance records to document equipment and system performance.

Primary emphasis should be given to the implementation of a preventive maintenance program. An equipment history file should be implemented and maintained, to assist in future capital planning and replacement decisions, as well as documenting compliance and new equipment warranty requirements. Other aspects of the maintenance program should include: (1) maintaining an adequate inventory of spare parts and tools; and (2) providing intensive mechanical maintenance training to employees.

A thorough maintenance program, when put in place at the time of start up, will help the owner realize the expected life span of its facilities or equipment, and safeguard against unnecessary replacement and failures.

Report Generation

The maintenance program output should include a series of predefined reports. These reports could be either printed out as hard copy on a printer or they could be displayed on the screen. The following tasks typify a well thought out computerized maintenance program. The samples provided were generated by the Computerized Operations and Maintenance Program (COMP's) developed by CH2M HILL.

PM Due Report (Fig. 7)

The PM Due Report is used to obtain information about the scheduled PM tasks which need to be performed on the plant's equipment. A report can be printed at any time for any due date desired. This report is most useful when printed out weekly.

Each PM procedure is assigned a priority and a craft code when the program is set up. This gives the user the ability to obtain PM Due Reports for tasks with a specific priority and/or craft code.

Another key feature of this report is that all procedures which are over 10% overdue are flagged to notify the maintenance worker of overdue tasks.

PM Overdue Report (Fig. 8)

The PM Overdue Report gives the maintenance manager a tool to monitor the ability of the maintenance crew to keep up with the scheduled PM. This report is essentially the same as the PM Due Report with the exception that it only includes the PM procedures which are over 10% overdue.

Equipment Task Report (Fig. 9)

The Equipment Task Report lists the PM procedures which have been designated for each piece of equipment.

Equipment Range: 5026497024 - 5027000000 Priority Range: 1 - 9 Due 07/15/85 Equipment --- Equipment Description ---ID PMP Over Craft Task No. Pri No. ---- PM Procedure ---Due Code 5026497024 WOOD FEEDER NO. 1 DRIVE (N.) 018 POWER POSITIONER DAILY PM *** MECH 11 8 243 POWER POSITIONER WEEKLY PM 21 8 *** MECH WOOD FEEDER NO. 2 DRIVE (CNTR) 5026497034 018 POWER POSITIONER DAILY PM MECH 11 8 *** 21 8 243 POWER POSITIONER WEEKLY PM *** MECH WOOD FEEDER NO. 3 DRIVE (S.) 5026497044 018 POWER POSITIONER DAILY PM 8 *** MECH 11 21 243 POWER POSITIONER WEEKLY PM *** MECH 8 FORCED DRAFT FAN 5026730015 11 8 401 CHECK FOR VIBRATIONS/EXCESSIVE NOISE *** OPER 202 CHECK FOR EXCESSIVE BEARING TEMPERATURE *** 12 8 OPER 254 LUBRICATE STEADY REST BEARING (AQUA LUBE) *** OPER 21 A 209 INSPECT DRIVE BELTS *** OPER 42 1 INDUCED DRAFT FAN 5026730025 11 8 401 CHECK FOR VIBRATIONS/EXCESSIVE NOISE *** OPER 202 CHECK FOR EXCESSIVE BEARING TEMPERATURE 12 8 *** OPER 8 254 LUBRICATE STEADY REST BEARING (AQUA LUBE) *** OPER 21 451 Lubricate Coupling (Lith BMPG) OPER 42 1 *** DISTRIBUTOR AIR DUMPER DRIVE 5026797013 8 018 POWER POSITIONER DAILY PM *** MECH 11 243 POWER POSITIONER WEEKLY PM 8 21 *** MECH F. D. FAN DAMPER DRIVE 5026797054 8 018 POWER POSITIONER DAILY PM *** MECH 11 243 POWER POSITIONER WEEKLY PM *** 21 8 MECH 5026797064 I.D. FAN DAMPER DRIVE 018 POWER POSITIONER DAILY PM 11 8 *** MECH 243 POWER POSITIONER WEEKLY PM 21 8 *** MECH 5026820064 BOILER FD PUMP #1 DRIVE (N) 551 VISUALLY INSPECT ELECTRICAL EQUIPMENT 31 *** ELEC 5026820065 BOILER FEED PUMP NO. 1 (N.) 8 401 CHECK FOR VIBRATIONS/EXCESSIVE NOISE 11 *** OPER 12 A 202 CHECK FOR EXCESSIVE BEARING TEMPERATURE *** OPER 21 8 434 CHECK/REFILL REDUCTION BOX OIL (OC 150) *** OPER 5026820075 BOILER FEED PUMP NO. 2 (S.) 401 CHECK FOR VIBRATIONS/EXCESSIVE NOISE *** OPER 11 8 12 8 202 CHECK FOR EXCESSIVE BEARING TEMPERATURE *** OPER 21 8 434 CHECK/REFILL REDUCTION BOX OIL (OC 150) *** OPER 41 4 501 CHECK MOTOR-COUPLING ALIGNMENT MECH *** 5026820115 TREATED WATER PUMP NO. 1 (N.) 8 401 CHECK FOR VIBRATIONS/EXCESSIVE NOISE *** OPER 11 OPER 202 CHECK FOR EXCESSIVE BEARING TEMPERATURE 12 8 *** TREATED WATER PUMP NO. 2 (S.) 5026820125 11 8 401 CHECK FOR VIBRATIONS/EXCESSIVE NOISE OPER *** 12 8 202 CHECK FOR EXCESSIVE BEARING TEMPERATURE *** OPER mentione provides an annexability the stage half in the Day Reports

FIG. 7 PM DUE REPORT (07/15/85)

attene black religes i babiet

Equipment		Equipment Description		
ID		PMP	%Over	Craft
Task No.	Pri	No PM Procedure	Due	Code
5026497024		WOOD FEEDER NO. 1 DRIVE (N.)		
11	8	018 POWER POSITIONER DAILY PM	3900	MECH
21	8	243 POWER POSITIONER WEEKLY PM	471	MECH
5026497034		WOOD FEEDER NO. 2 DRIVE (CNTR)		
11	8	018 POWER POSITIONER DAILY PM	3900	MECH
21	8	243 POWER POSITIONER WEEKLY PM	471	MECH
5026497044		WOOD FEEDER NO. 3 DRIVE (S.)		
11	8	018 POWER POSITIONER DAILY PM	3900	MECH
21	8	243 POWER POSITIONER WEEKLY PM	471	MECH
5026730015		FORCED DRAFT FAN		
11	8	401 CHECK FOR VIBRATIONS/EXCESSIVE NOISE	18000	OPER
12	8	202 CHECK FOR EXCESSIVE BEARING TEMPERATURE	18000	OPER
21	8	254 LUBRICATE STEADY REST BEARING (AQUA LUBE)	2485	OPER
42	1	209 INSPECT DRIVE BELTS	98	OPER
5026730025		INDUCED DRAFT FAN		
11	8	401 CHECK FOR VIBRATIONS/EXCESSIVE NOISE	18000	OPER
12	8	202 CHECK FOR EXCESSIVE BEARING TEMPERATURE	18000	OPER
21	8	254 LUBRICATE STEADY REST BEARING (AQUA LUBE)	2485	OPER
42	1	451 Lubricate Coupling (Lith BMPG)	98	OPER
5026797013		DISTRIBUTOR AIR DUMPER DRIVE		
11	8	018 POWER POSITIONER DAILY PM	3900	MECH
21	8	243 POWER POSITIONER WEEKLY PM	471	MECH
5026797054		F. D. FAN DAMPER DRIVE		
11	8	018 POWER POSITIONER DAILY PM	3900	MECH
21	8	243 POWER POSITIONER WEEKLY PM	471	MECH
5026797064		I.D. FAN DAMPER DRIVE		
11	8	018 POWER POSITIONER DAILY PM	3900	MECH
21	8	243 POWER POSITIONER WEEKLY PM	471	MECH
5026820064		BOILER FD PUMP #1 DRIVE (N)		
31	4	551 VISUALLY INSPECT ELECTRICAL EQUIPMENT	40	ELEC
5026820065		BOILER FEED PUMP NO. 1 (N.)		
11	8	401 CHECK FOR VIBRATIONS/EXCESSIVE NOISE	4100	OPER
12	8	202 CHECK FOR EXCESSIVE BEARING TEMPERATURE	4100	OPER
21	8	434 CHECK/REFILL REDUCTION BOX OIL (OC 150)	500	OPER
5026820075		BOILER FEED PUMP NO. 2 (S.)		
11	8	401 CHECK FOR VIBRATIONS/EXCESSIVE NOISE	4100	OPER
12	8	202 CHECK FOR EXCESSIVE BEARING TEMPERATURE	4100	OPER
21	8	434 CHECK/REFILL REDUCTION BOX OIL (OC 150)	500	OPER
41	4	501 CHECK MOTOR-COUPLING ALIGNMENT	64	MECH
5026820115		TREATED WATER PUMP NO. 1 (N.)		
11	8	401 CHECK FOR VIBRATIONS/EXCESSIVE NOISE	4100	OPER
12	8	202 CHECK FOR EXCESSIVE BEARING TEMPERATURE	4100	OPER
5026820125		TREATED WATER PUMP NO. 2 (S.)		
11	8	401 CHECK FOR VIBRATIONS/EXCESSIVE NOISE	4100	OPER
12	8	202 CHECK FOR EXCESSIVE BEARING TEMPERATURE	4100	OPER

FIG. 8 PM OVERDUE REPORT (07/15/85)

Equipment	Range	: 5026127014 - 5027000000 Priority Range: 1 - 9	
Equipment ID	Task	Equipment Description PMP	Craft
	No.	Prior No PM Procedure	Code
5026127014		TRUCK DUMPER PUMP #1 DRIVE (E)	
5026127015		TRUCK DUMPER PUMP NO. 1 (E.)	
5026127024		TRUCK DUMPER PUMP #2 DRIVE (W)	
5026127025		TRUCK DUMPER PUMP NO. 2 (W.)	
5026167013		TRUCK DUMPER	
5026291013		TRUCK WEIGH SCALES	
5026489013		FUEL CONVEYOR	
5026497024		WOOD FEEDER NO. 1 DRIVE (N.)	
	11	8 018 POWER POSITIONER DAILY PM	MECH
	21	8 243 POWER POSITIONER WEEKLY PM	MECH
	51	5 754 FOWER FOSITIONER SEMIANNUAL FM	MECH
5026497034		WOOD FEEDER NO. 2 DRIVE (CNTR)	
	11	8 018 POWER POSITIONER DAILY PM	MECH
	21	8 243 POWER POSITIONER WEEKLY PM	MECH
	51	5 754 FOWER FOSITIONER SEMIANNUAL PM	MECH
5026497044		WOOD FEEDER NO. 3 DRIVE (S.)	
	11	8 018 POWER POSITIONER DAILY PM	MECH
	21	8 243 POWER POSITIONER WEEKLY PM	MECH
	51	5 754 POWER POSITIONER SEMIANNUAL PM	MECH
5026730014		FORCED DRAFT FAN DRIVE	
	51	1 252 LUBRICATE MOTOR BEARINGS(ALUM)	OPER
	52	1 875 CLEAN MOTOR	ELEC
	53	1 776 CHECK MOTOR RUNNING AMPS	ELEC
	61	1 879 CHECK MOTOR INSULATION RESISTANCE	ELEC
5026730015		FORCED DRAFT FAN	
	11	8 401 CHECK FOR VIBRATIONS/EXCESSIVE NOISE	OPER
	12	8 202 CHECK FOR EXCESSIVE BEARING TEMPERATURE	OPER
	21	8 254 LUBRICATE STEADY REST BEARING (AQUA LUBE)	OPER
	42	1 209 INSPECT DRIVE BELTS	OPER
5026730016		FORCED DRAFT FAN V-BELT DRIVE	
5026730024		INDUCED DRAFT FAN DRIVE	
	52	1 875 CLEAN MOTOR	ELEC
	52	1 252 LUBRICATE MOTOR BEARINGS (ALUM)	OPER
	53	1 776 CHECK MOTOR RUNNING AMPS	ELEC
	61	1 879 CHECK MOTOR INSULATION RESISTANCE	EL_EC
5026730025		INDUCED DRAFT FAN	
	11	8 401 CHECK FOR VIBRATIONS/EXCESSIVE NOISE	OPER
	12	8 202 CHECK FOR EXCESSIVE BEARING TEMPERATURE	OPER
	21	8 254 LUBRICATE STEADY REST BEARING (AQUA LUBE)	OPER
	42	1 451 Lubricate Coupling (Lith BMPG)	OPER
5026730026		INDUCED DRAFT FAN COUPLING	
5026750707		BOILER CONTROL PANEL	
5026763013		ROTARY SEAL FEEDER NO. 1 (N.)	
5026763014		ROTARY SEAL FDR #1 DRIVE (N)	
5026763023		ROTARY SEAL FEEDER NO. 2	

FIG. 9 EQUIPMENT TASK REPORT (07/15/85)

Equipment Range: 041210		
Equipment ID: 041210	Description: Sec	Clar #1 Drive Mechanism
Manufacturer: Envirex Model No.: H-40LT Serial No.: H-116237 Initial Cost: 15000 Startup Date: 03/17/78	Catalog ID: A12 Drawing ID: S8	Supplier: G.T. Morris 2020 Lost Creek Dr. Salem OR 97288 503/292-9292
General 80'-0" Diameter Tow-Bro Velocity (FPS) - 2.657	o w∕ Skimming : Flow Max, .664 Min : Head	(MGD) - 2.016 Max504 Min : loss839 FT Max :
Recommended Spare Parts		
DCH Drive Chain WMG Worm Gear VPG Vent Plugs (Set) DBD Deflector Blade	SPR WRM SQG MSW	Drive Sprocket Worm Squeegees for Scraper Arm Torque Overload Micro Switches

FIG. 10 EQUIPMENT DATA REPORT

Equipment Information Report (Fig. 10)

The Equipment Information module contains specific information on each piece of equipment in the program. This includes such information as the supplier, recommended spare parts, serial number, startup date, catalog number, and nameplate data. This module provides a place to store away a large amount of "equipment information" which can be easily misplaced or lost. The Equipment Data Report sample shown in Fig. 10 summarizes all of the information input into the program on a specific equipment item. It is an extremely useful tool which makes it easy to find information that would normally be in more than one place.

PM Procedures Report (Fig. 11)

This report shows the tools required, materials required, and special instructions for performing each PM procedure. This gives plant staff a place to document helpful hints, lubricant types, safety procedures, and useful tools which will help in performing the specific PM procedures, making the job easier and safer. New experiences need to be recorded, and added through the PM Procedure Updates section of the program.

Work Order Reports

The work order program defines all maintenance tasks in the plant as one of two types: planned or scheduled maintenance, and breakdown or corrective maintenance. All breakdown or corrective maintenance is defined as Work Orders. The program contains a module which allows the plant staff to enter specific information from work orders which have been performed. This information provides the staff with information which can aid in identifying problem equipment and costs associated with work orders. The following two reports are generated from this program.

Work Order History Report (Fig. 12)

This report lists all of the work orders performed for a specific equipment item. Information included with each work order is the work order ID, description of work performed, hours worked, and materials cost.

This is a very easy way to search through years of work orders and quickly come up with the ones performed on specific equipment. All of the original work orders should still be filled in case more specific information is needed. These can be easily found if filed in logical order of work order ID.

Work Order Summary Report (Fig. 13)

This report tells the total number of work orders performed on a piece of equipment over the designated data range. Also included is the total labor cost, materials cost, initial equipment cost, and total maintenance cost/initial equipment cost (TC/IC) factor.

This report is very useful in identifying problem or high maintenance equipment. The TC/IC Factor shows the relative cost of work order maintenance to the equipment's value, providing justification for replacement of high maintenance items. PM Procedure Range: 001 - 010

PMP NO.: 001 Description: INSPECT FOR UNUSUAL NOISE OR VIBRATION

Time Required: .2

ab tanen Craft Code: OPER Time Required: Tools Required

Materials Required

Special Instructions

PMP ND.: 002 Description: INSPECT FOR EXCESSIVE HEAT

Craft Code: PTWKR Tools Required

Materials Required

Special Instructions Special Instructions

PMP NO.: 003 Description: RECORD FUMP RUNNING HOURS

Craft Code: OPER Time Required: Tools Required

Materials Required

Special Instructions its got bound would shall be added and the state of the second state of the second state of the second state of the

PMP NO.: 004 Description: CHECK OPERATION OF CHECK VALVE

Craft Code: OPER Time Required: Tools Required

Materials Required

Special Instructions

PMP NO.: 005 Description: CHECK OPERATION OF BUBBLER SYSTEM

Time Required:

Craft Code: OPER Tools Required

Materials Required

Special Instructions

FIG. 11 PM PROCEDURES REPORT (07/15/85)

Equipment	Range: 011	111 -	012410	Start Date: 01/01/83	Erid Date: 08	/25/83
Equipment ID	Work Order ID	Date WO Closed	Work Order	Description	Man Hours	Parts Cost
011111 011111 011112 011122 011122 011510 012111 012121 011510	A002103 A002298 A002159 A002321 A002386 A002468 A002468 A002470 A002503	01/25/83 03/10/83 02/12/83 03/15/83 03/22/83 04/22/83 06/22/83 05/03/83	Replaced upper Replaced lower Rebuilt Impell Rebuilt Impell Unplugged fuel Rewound motor Replaced shaft Replaced tach	motor bearing motor bearing er er pump sleeve	8.0 10.0 12.0 8.0 2.0 4.0 8.0 4.0	75 75 350 350 0 450 115 230

FIG. 12 WORK ORDER HISTORY REPORT

Equipment	Range: 011111	- 0	12510			Start Date:	01/01	/78	End Date:	08/25/83
Equipment ID	No. of WO's	L. C	abor ost	P C	arts	T C	otal ost	Ir Co	itial st	71/JT
011111 011112 011113 011121 011121 012121 012121 012121 012210 012510	4 2 1 1 2 3 1 1 3		353 154 30 45 160 145 74 35 156	\$\$\$\$\$\$\$\$\$\$	190 415 0 12 395 227 184 110 447		543 569 30 57 555 372 258 145 603	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	850 775 950 850 775 775 850 105 8900	0.64 0.73 0.03 0.07 0.72 0.48 0.30 1.38 0.07

FIG. 13 WORK ORDER SUMMARY REPORT

Hardware and Software Selection

The operations contractor should carefully select the computer hardware so it will meet the needs of the plant. They should be certain the disk storage capacity is large enough to handle their total data base and also keep computer uses other than maintenance management in mind when selecting their system. Other uses could include:

- (a) inventory control
- (b) process control
- (c) monthly monitor reporting
- (d) word processing

The contractor should always keep in mind that the proper hardware is essential to operate their software, yet the software must be able to provide the desired results.

SUMMARY

Reputable service contractors provide comprehensive operations and maintenance services, including but not limited to:

- (a) project administration
- (b) organization of project team
- (c) employee motivation
- (d) total staff training
- (e) maintenance management
- (f) quality assurance
- (g) process optimization
- (h) budgeting and cost control mechanisms

Million II. Table 1

- (i) client-contractor communications network
- (j) public awareness programs

(k) safety procedures/training/emergency response program (1) computerized management tools

Key features to consider in selecting a service contractor should include a firm with:

- (a) experience in similar projects
- (b) professional motivated employees
- (c) high quality, low cost service
- (d) a flexible approach to project needs
- (e) a strong preventive maintenance program
- (f) strong contractor-client communications

BIBLIOGRAPHY

Leinbach, M. S. "The Contract Operation Option: Getting the Most out of What You've Got." *Waterworld News*, March/April 1985. Madenburg, R. S. "Assessing Waste-to-Energy Project Risks." In Proceedings of the 1984 National Waste Processing Conference. New York: The American Society of Mechanical Engineers, 1984.

Patton, W. J. "Why Contract Operations?" Presented to Virginia Water Pollution Control Association, Inc., 1983; Operations Management International.

Richwine, R. S. "Computerized Maintenance Management System." Presented at 56th Annual Conference Water Pollution Control Federation, 1983.

Key Words: Communications; Computerization; Cost Controls; Maintenance; Management; Operations; Quality Assurance; Systems Management; Training

FIG. 13 WORK DROCK SUMMARY REPORT

Interference and the second se

faultane and fieltware Schedles -

This operations consists should take filly taken the computer for descriver to will deal the parents of the plant. They should be certain the disk strenge opparity is large meanifier to be all which their total their fill disk loop complete takes of the their total data bies and gate mean is what when whething their system. Other was could include

- interes paterna, an
- (iff. paiemie control
- Transfer toppen dupped for

(d) woul proceeding (f) woul proceeding (f) an animation should always large in mind align the primes hardware in summary to specific their wollware, out the authornee mass by able to provide the during counts.

SUMPLAR

Reputable active contraction provide comprehenviveroperations and ministences any tene orchafting bits

- test a longer and social to adjust a longer bit
- (i) suppopt motivation receivery with interiors (i)
 - the second second
 - designation of the second second second
 - and an investory descention in
 - and have been been also and the state of the second
 - - mental and the second s
 - second second a subset of Control Control Providence of the State of Control Con
 - and second decrease